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The infinite superpositions of random plane waves are known to be threaded with vortex line
singularities which form complicated tangles and obey strict topological rules. We observe that
within these structures a timelike axis appears to emerge with which we can define vortex velocities
in a useful way: with both numerical simulations and optical experiments, we show that the statistics
of these velocities match those of turbulent quantum fluids such as superfluid helium and atomic
Bose-Einstein condensates. These statistics are shown to be independent of system scale. These
results raise deep questions about the general nature of quantum chaos and the role of nonlinearity
in the structure of turbulence.

Despite far predating nearly all other open problems in
both mathematics and physics, a complete theory of fluid
turbulence remains elusive, and represents one of the
greatest open problems of either discipline [1]. Though
the problem of turbulence in classical fluids was treated
with modern sophistication by Kolmogorov in the decade
before [2, 3], it was not until 1955 that Feynman, who
called turbulence the most important unsolved problem
of classical physics [4], gave the problem a truly modern
flavor by merging it with quantum mechanics [5]. Since
then a great deal of effort has gone into the study of
the properties of turbulence in quantum fluids, not only
as a way to better understand the dynamics of a gen-
eral class of complicated quantum systems, but also as
a way to understand the general problem of fluid turbu-
lence, with quantum turbulence being studied by some
as “the ‘skeleton’ of ordinary turbulence” [6]. With the
more recent advance of technologies based on quantum
fluidic systems, such as in quantum simulation and com-
putation [7], the understanding of quantum turbulence
has left the realm of pure theory: a fundamental un-
derstanding of quantum turbulence has become critical
to the continued development of relevant technologies.
Many important systems behave as quantum fluids; the
turbulent dynamics of superfluid Helium, Bose Einstein
condensates, and polariton condensates are all highly sig-
nificant areas of current research [8–13].

Unlike a classical fluid, a quantum fluid is spatially co-
herent over macroscopic distances. This long range order
necessitates a singly defined phase over the field, a con-
straint which forces the quantization of phase vortices
into discrete topological charges. The nature of classical
and quantum turbulence is in this way fundamentally
different: while turbulence in classical fluids is charac-
terized by structure spanning many length scales, turbu-
lent quantum fluids have a characteristic length scale im-
parted by vortex quantization. Still, it has only recently
been shown that there exists a fundamental difference in
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the measurable statistical behavior of quantum and clas-
sical fluids: the velocity statistics of turbulent quantum
fluids differ dramatically from those of turbulent classical
fluids [14–18]. While the velocity statistics of classically
turbulent systems show near-Gaussian probability distri-
butions [19, 20], the velocity distributions of quantum
turbulence are heavy-tailed [14–18]. To our knowledge
this stands as the only quantitative measure which defini-
tively separates quantum and classical turbulence in the
inertial subrange.

While the quantum fluids discussed so far have rep-
resented exotic states of condensed matter systems, we
suggest that any spatially coherent wave should obey the
same fundamental behavior; in this Letter we analogize
laser light to a macroscopic, room temperature quantum
fluid which supports turbulent structure. Laser light
clearly satisfies the requirement of macroscopic coher-
ence, and previous work has shown that the similarity in
governing equations can explain dynamical similarities of
few vortex systems [21]. However, it is less obvious that
light can support turbulent structure in free space, in
which there are no nonlinear interactions. The pioneer-
ing work of Nye, Berry and Dennis has revealed quali-
tative links between random optical fields and superfluid
turbulence [22–24], but others have argued that in a lin-
ear system the vortices cannot drive the dynamics of the
field and thus the only similarity is appearance [25]. This
has resulted in a widespread assumption that quantum
fluidic behavior requires many body interactions [10].

In one sense, a turbulent state is one which is char-
acterized by disorder. If we think of isotropically tur-
bulent quantum fluids found in condensed matter sys-
tems as maximally disordered solutions to their govern-
ing equations (the nonlinear Schrödinger equations), then
we should expect that if we are to find structure reminis-
cent of isotropic quantum turbulence in a linear system,
we should look at the maximally disordered solutions of
those governing equations. In the case of light, the maxi-
mally disordered solutions to the Helmholtz equation are
those which can be decomposed into a uniform distribu-
tion of random plane waves. This so called random wave
system is well studied in the context of quantum chaos,
modeling the natural excitations of classically chaotic bil-
liard tables [26, 27], and is also known to be a good model
of monochromatic laser scatter [28].
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We begin with the construction of the random wave.
Although it is trivial to define a single plane wave with
two spatial dimensions and one time (or propagation)
axis, as more plane waves of different orientaions are
added, the phase front ceases to be confined to one well
defined xy-plane. As the number of random plane waves
approaches infinity, the phase front of the resulting su-
perposition fills 3-dimensional space. It is thus nontriv-
ial to claim that the z-axis might act as a time axis in
any representation of the system. However, we find that
although the time axis becomes ill defined from the per-
spective of constituent plane waves, the propagation axis
of the random wave is timelike when viewed from the
perspective of emergent vortex behavior.

The top of Fig. 1 shows the numerically simulated am-
plitude and phase of a transverse slice of a typical random
wave. The lower panel of that figure shows the tangled
paths of phase singularities. We define the transverse
velocity of each vortex i as the rate of change of vortex
position ri as a function of z.

Random waves are simulated by superposing a finite
number of uniformly parameterized plane waves. To
propagate the random wave, each plane wave in the su-
perposition is evolved in time. Over this time evolution,
the phase singularities of the random wave move about
the xy-plane, and are created and annihilated in pairs
of opposite charge, seemingly at random. However each
charge is topologically stable, and because of the con-
straint of a continuously well defined phase there is more
structure than appears, as will become clear shortly.

We record the distribution of vortex velocities in our
simulated random waves, the results of which are shown
at the top of Fig. 2. This shows that the vortices in
linear random waves do indeed obey the characteristi-
cally heavy tailed velocity statistics of quantum turbu-
lence. That figure also shows fits to curves consistent
with the statistics of classical fluids (dotted), atomic
Bose-Einstein condensates (purple band) and superfluid
Helium II (dashed). In most other works on quantum
turbulent velocity statistics these curves are fit the form
of a/xb for a scaling constant a and tail defined by b,
which match well at the tails of measured distributions
but which are divergent and unphysical near the center
[14–18]. As a more physical model we fit to the super-
statistical model of Beck and Miah [29], which has been
shown to match the velocity statistics of quantum fluids
in both the low and high velocity regimes.

Fig. 2 shows, our optical results closely match the form
of the heavy tailed velocity distributions consistent with
experiments and simulations of various quantum fluids,
and are inconsistent with the statistics of classical fluids,
which are Gaussian (dotted) [19, 20]. Our results reveal
an apparent hierarchy of statistical distributions, with
fits to our data having power-law tails between 1/x3.8 and
1/x4.6, while the tails of atomic Bose-Einstein conden-
sates have been shown to be between 1/x3.3 and 1/x3.6,
and those of superfluid helium fitting well to 1/x3. This
appear to follow from superfluid helium having a higher

FIG. 1. The transverse amplitude (top left) and phase (top
middle) of a typical random wave. The top right panel shows
the zeros of the real (white) and imaginary (black) parts of
the wave represented in the top two panels, the intersections
of which occur at phase singularities, which are marked in
yellow. These singularities can be tracked over the propaga-
tion of the wave, the paths of which are shown in the bottom
panel. That cell is oriented such that the z axis is vertical.
Each vortex line is marked in a different color, highlighting a
complicated, tangle-like structure. The form of tangled vor-
tex lines shown here appears qualitatively identical to similar
plots of vortex lines in condensed matter systems [18].

interaction strength than the atomic Bose-Einstein con-
densate, and from light having no interactions at all. Pre-
vious theories have suggested that the velocity distribu-
tion seen in superfluid Helium is the fundamental, topo-
logically mandated distribution [14, 15], but our result
suggests that the 1/x3 tails associated with superfluid
helium are the combined result of topological constraints
and other phenomena, the statistical effects of which are
yet to be understood.

Random scatter composed of a uniform distribution of
plane waves makes for a random wave structure with sub-
wavelength nearest neighbor vortex distances [30]. Al-
though it is easy for our numerical simulations to probe
this scale, this fine of structure is extremely difficult to
observe experimentally, requiring a complicated and spe-
cialized near-field imaging apparatus to measure directly.
However, because the only constraint on the movement
of vortices is topological, we postulate that the statis-
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tical behavior of the quantum fluid represents a topo-
logical phase of fluid flow which must be invariant under
the scale-changing spatial filtration operation inherent to
imaging with a simple lens.

Repeating our numerical simulations with different re-
strictions on the allowed range of polar angles of con-
stituent plane waves, we observe the same characteristic
statistics. This implies that the imaging of a random
wave with a decreasing numerical aperture results in the
observation of the same dynamical vortex structure –
only with increasing characteristic length scales. Thus
the form of the velocity distribution is invariant on the
low-pass spatial filtration inherent to the optical imag-
ing of high frequency structure up to a scaling constant.
This allows us to implement a simple experimental con-
firmation of our numerical results.

We therefore proceed to discuss an experimental,
macroscopic observation of the vortex velocity distribu-
tion of laser scatter. We scatter a collimated Helium-
Neon (633nm) laser beam with several layers of Scotch
tape, and image the amplitude and phase (see Methods)
of the the scatter at increasing distances from the tape.
A true random wave has no spatial confinement, and thus
has no divergence. To approximate the lack of divergence
with a scattered Gaussian beam, we image the scattered
mode near the plane of the scatterer, where the mode is
at its waist.

We implement the phase shifting holography technique
of Yamaguchi [31] to image both the amplitude and com-
plete phase structure of the physical random field over a
length of its propagation. Physically, this is simply a two
arm interferometer in which one arm can be shifted in
length by quarter wavelengths, and in which the sample
is shifted along the propagation axis in steps of 0.05mm.
Our imaging objective has a numerical aperture of 0.75.
We analyze the resulting 3D complex image as in the
numerical simulations.

Marking vortex paths as in our numerical experiments,
a distribution of transverse velocities is accumulated.
The results, shown at the botton of Fig. 2, reveal that
macroscopically observed laser scatter does in fact obey
highly non-Gaussian velocity statistics near the surface
of the scatterer, consistent with quantum turbulence. As
suggested previously, the numerical aperture of our ex-
periment is limited, and consistent with our simulations
we see the same behavior as with an ideal near-field imag-
ing apparatus, but at significantly larger length scales.
Whereas the ideal optical random wave exhibits inter-
vortex lengths on the scale of hundreds of nanometers,
we observe inter-vortex lengths on the scale of tens of
micrometers, and yet see the exact same characteristic
functional form describing the velocity statistics; the ve-
locities in the two systems differ by four orders of mag-
nitude. Continuing to treat this system as one of a 2D
sea of point particles which evolve in time, this observed
nonreliance of the quantum statistics on interparticle dis-
tance tells us that in such systems the effective interac-
tions between vortex singularities do not depend on the

FIG. 2. The numerically simulated (top) and experimen-
tally measured (bottom) probability distributions of trans-
verse vortex velocities in random optical scatter (black), plot-
ted on a logarithmic scale showing relative probabilities over
three orders of magnitude. Units of velocity are nondimen-
sionalized by scaling by the variance of the distributions.
Physically, velocities represent the relative transverse rate of
change of vortex position as a function of z. Also plotted are
curves consistent with the vortex velocity distributions of the
classical fluid (dotted), the atomic BEC (purple band), and
superfluid helium (dashed) [14, 15]. We fit the superstatisti-
cal q-distribution to our results, finding q for our results falls
between about 1.4 and 1.5 (green bands in Fig.2). This cor-
responds to power-law tails between 3.8 and 4.6. The same
curves are shown in the plots of simulated and experimen-
tally measured data, up to rescaling by the variances of each
distribution.

distance between them.
It can therefore be said that with topological con-

straints alone, a completely linear system can be forced
to exhibit the emergence of structure typically associated
with nonlinear interactions; in condensed matter systems
it is understood that it is the nonlinear, particle-like at-
tractions and repulsions of topological charges which cre-
ate the high velocity creation/annihilation events that
cause the heavy-tailed statistics characteristic of quan-
tum turbulence. That these statistics appear in a linear
medium is surprising, and raises important questions, as
it is not clear what it means for a linear system to possess
the characteristic structure of turbulence.

We note that the details of topologically mediated
particle-like interactions between vortices in quantum flu-
ids are themselves not yet fully understood. What is clear
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from our results, however, is that their underlying physics
is surprisingly universal, being observed in very different
physical systems governed by very different equations.

More generally, we have provided evidence that ordi-
nary laser light can be thought of as a quantum fluid
in a useful way, demonstrating that classical optics and
quantum fluid dynamics are intimately tied. This raises
the question of what other quantum fluid dynamical be-
havior can be understood with linear wave mechanics.
While in this work insight was gained into the fluid dy-
namics of condensed matter systems with optical ana-
logues, we expect this type of analysis to be fruitful in
the other direction as well. In particular, we expect that

the structure of vortex nucleations, such as is seen in the
fluid dynamical von Kármán effect [32], will soon inspire
the study of new optical phenomena, and bring insight
to visually similar and perhaps dynamically analogous
optical structures such as the fractional vortex Hilbert’s
hotel [33]. In short, it seems that members of both fields
have much more to learn from each other than previously
realized.
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