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We investigate via a combination of experiments and numerical analyses the collision of elastic
vector solitons in a chain of rigid units connected by flexible hinges. Due to the vectorial nature of
these solitons, very unusual behaviors are observed: while, as expected, the solitons emerge unaltered
from the collision if they excite rotations of the same direction, they do not penetrate each other and
instead repel one another if they induce rotations of opposite direction. Our analysis reveals that
such anomalous collisions are a consequence of the large-amplitude characteristics of the solitons,
which locally modify the properties of the underlying media. Specifically, their large rotations create
a significant barrier for pulses that excite rotations of opposite direction and this may block their
propagation. Our findings provide new insights into the collision dynamics of elastic solitary waves.
Furthermore, the observed anomalous collisions pave new ways towards the advanced control of large
amplitude mechanical pulses, as they provide opportunities to remotely detect, change or destruct
high-amplitude signals and impacts.

Collisions are one of the most fascinating features of
solitary waves and have been investigated in many areas
of science, including optics [1, 2], electronics [3], plas-
monics [4, 5], quantum mechanics [6], general relativ-
ity [7] and mechanics [8–10]. Typically, the solitons are
found to emerge from the collision unchanged (except for
a phase shift [3, 5, 6] or the formation of small secondary
waves [8–10]), as if there had been no interaction at all.
This remarkable behavior led Zabusky and Kruskal [11]
to coin the name ’soliton’ (after photon, proton, etc.), to
emphasize the particle-like character of these wave pulses
[12]. While passing through one another without change
of shape, amplitude, or speed is one of the defining prop-
erties of solitons [6], few exceptions have been found for
solitary waves that propagate in systems that are either
damped or not fully integrable. Specifically, the collision
between a kink and its anti-kink pair has been shown to
lead to a trapped breather in the integrable sine-Gordon
system with damping [13], to a localized bound pair in
the non-integrable φ4 model [14] and to different types
of kinks in the non-integrable double sine-Gordon model
[13].

In this study, we focus on a mechanical metamaterial
based on rotating rigid units [15–18] and use a combina-
tion of experiments and numerical analyses to study the
collisions between two supported elastic vector solitons.
Surprisingly, despite of the fact that the propagation of a
single soliton is accurately captured by the completely in-
tegrable modified Korteweg-de Vries (mKdV) equation,
not all solitary waves emerge unaltered from the colli-
sions. If the propagating solitons induce rotations of op-
posite direction at a given unit in the system, they repel
each other upon collision. We show that this highly un-
usual behavior is closely related to the vectorial nature
of the supported solitons, which in turn leads to the for-

mation of amplitude gaps - ranges in amplitude where
elastic soliton propagation is forbidden. The large rota-
tions induced by a soliton create a barrier for pulses with
rotational component of opposite sign that blocks their
propagation. Our study provides new insights into the
collision dynamics of elastic solitary waves and reveals
that in vector solitons the coupling between the different
components can lead to completely unexplored and new
phenomena.

Our mechanical metamaterial consists of a chain of N
pairs of rigid crosses connected by thin and flexible hinges
(see Fig. 1A). It has been recently shown that the propa-
gation of a single soliton in such system is accurately de-
scribed by a nonlinear Klein-Gordon equation [16], which
can be rewritten in the form of the completely integrable
mKdV equation [19]. The solution of such equation in-
dicates that the considered metamaterial supports the
propagation of elastic vector solitons that induce simul-
taneous longitudinal displacement ui and rotation θi at
the i-th pair of crosses, with all neighboring units rotat-
ing in opposite directions (see Fig. 1A). Specifically, ui
and θi are defined by [16] (see Supplementary Materials)

ui (t) =
aA2W

2(1− c2/c20)

[
1− tanh

(
ia− ct
W

)]
(1)

and

θi (t) = A sech

(
ia− ct
W

)
, (2)

where a denotes the center-to-center distance between
neighboring units and c0 is the velocity of the supported
linear longitudinal waves in the long wavelength limit.
Moreover, A, c and W denote the amplitude, speed and
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FIG. 1. (A) Schematic of the system. (B)-(C) Schematics of
the impactors used to excite (B) positive and (C) negative
rotations. (D) Schematic of our first experiment. (E)-(F)
Rotation of the pairs of crosses during the propagation of the
pulses, as recorded during our first test in (E) experiments
and (F) numerical simulations. (G) Schematic of our second
experiment. (H)-(I) Rotation of the pairs of crosses during
the propagation of the pulses, as recorded during our second
test in (H) experiments and (I) numerical simulations.

width of the pulses, with speed and width that can be
expressed in terms of amplitude as

c = ±c0
√

6Kθ

A2 + 6Kθ
, (3)

and

W =
a

α

√
α2(Ks −Kθ)− 6Kθ/(A2 + 6Kθ)

6Kθ
. (4)

where α represents the normalized mass, and Ks and Kθ

are the normalized shear and bending stiffnesses of the
hinges. At this point it is important to note that the
propagation of the vector solitons defined by Eqs. (1)
and (2) requires a strong coupling among their two com-
ponents ui and θi [20]. Since in our system such strong

coupling is activated only for large enough rotations, vec-
tor solitons with

|A| <

√
6Ks

α2(Ks −Kθ)
− 6Kθ (5)

cannot propagate, resulting in the emergence of ampli-
tude gaps [16]. While Eq. (5) fully defines the ampli-
tude gap for a chain in which all hinges are aligned, pre-
rotations of the crosses significantly increase the magni-
tude of the lower threshold, as they make the propagation
of solitons that induce energetically unfavourable rota-
tion more difficult [16]. Notably, our analysis will reveal
that such pre-rotation effect on the amplitude gap plays
a central role in defining the collision dynamics.

To investigate the collision of solitons in our system,
we test a structure comprising N = 50 pairs of crosses
made with LEGO bricks and connected via polyester
plastic sheets. To initiate elastic vector solitons, we use
two impactors that induce simultaneous rotation and dis-
placement of the crosses at both ends of the sample (see
Figs. 1B and C, and Supplementary Materials). We con-
trol the amplitude of the pulses by varying the maximum
distance traveled by the impactors. As for the direc-
tion of rotation imposed to the first and last pairs of
crosses, we select it by using two different types of im-
pactors. Specifically, since we define as positive a clock-
wise (counter-clockwise) rotation of the top unit in the
even (odd) pairs, we use an impactor that hits the mid-
point of the end pairs to excite positive θi (see Fig. 1B)
and one that hits their external arms to excite negative θi
(see Fig. 1C - note that the direction of rotations imposed
by the impactors changes if the chain comprises an odd
number of pairs, see Supplementary Materials). In addi-
tion to the experiments, we also simulate the response of
a chain with N = 500 pairs of crosses (to eliminate possi-
ble boundary effects) by numerically integrating the 2N
ordinary differential equations with parameters α = 1.8,
Ks = 0.02 and Kθ = 1.5× 10−4 [16].

In Figs. 1E-F and H-I, we present experimental and
numerical results for two sets of input signals applied
to the left and right ends of the chain. First, the im-
pactors excite solitons with amplitude Aleft = A10 = 0.2
and Aright = AN−10 = 0.2 (Ai being the amplitude of θi
before the collision). Both our experimental and numer-
ical results indicate that the two pulses, which induce
rotations with the same direction at any given unit in
the chain (see Fig. 1D), penetrate each other without
change of shape, amplitude or speed (see Fig. 1E and
F and Supplementary Movie 1). As commonly observed
when two solitons collide [3–10], only a slight time de-
lay may be observed, confirming that our metamaterial
can respond similarly to a fully integrable system such
as a KdV system [13, 21]. Second, we apply Aleft = −0.2
and Aright = 0.2 to excite two pulses that induce rota-
tions of opposite sign at any given unit (see Fig. 1G).
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FIG. 2. (A) Cross-correlation between θ10(t < tc) and θN−10(t > tc) as a function of Aleft for Aright = 0.2. Triangular markers
correspond to experimental data, while the black line is generated using numerical simulations. (B) Numerically obtained
cross-correlation between θ10(t < tc) and θN−10(t > tc) as a function of Aleft and Aright. (C) Complete picture of the collision
dynamic between the pulses supported by the system. (D)-(E) Rotations of the pairs of crosses during the propagation of the
pulses as found in numerical simulations for (D) (Aleft, Aright) = (-0.3,0.22) and (E) (0.08,0.3).

Surprisingly, we find that in this case the solitons do
not penetrate each other and instead reflect one another
(see Figs.1H and I and Supplementary Movie 1). This
phenomenon is especially visible from the absence of ro-
tations of the units in the center of the system. It is also
important to note that, while in the experiments there
is inevitably some dissipation due to both friction and
viscous effects, in our numerical simulation we do not in-
clude any damping. As such, our results indicate that the
observed anomalous collisions are not due to the presence
of damping or boundary effects, and are rather a robust
feature of the system.

To better understand how two colliding solitons inter-
act in our system, we focus on the left-initiated pulse and
systematically investigate how it is affected by the colli-
sion with the right-initiated one. To quantify such effect,
we calculate the cross-correlation between θ10(t < tc) and
θN−10(t > tc) (tc denoting the time at which the collision
occurs) as a function of Aleft, while keeping Aright = 0.2.
As shown in Fig. 2A, we find that the response of the
system is characterized by two distinct regions. For
Aleft < Aleft

lower = −0.28 and Aleft > Aleft
upper = 0.12 the

left-initiated elastic vector solitons propagate through
the entire structure unaffected by the collision with
the right-initiated pulses and the cross-correlation ap-
proaches unity. By contrast, for Aleft

lower < Aleft < Aleft
upper

the left-initiated pulse does not reach the other end of the
chain and the cross-correlation is << 1. Focusing on this
region of low cross-correlation, two recognizably different
behaviors are observed. First, for −0.12 < Aleft < Aleft

upper

the cross-correlation approaches zero, since the propaga-
tion of the left-initiated soliton is prevented by the am-
plitude gap of the chain defined by Eq. (5) (note that
for this range of amplitudes no collision occurs, since
the left-initiated soliton dies before reaching the right-
initiated one). Second, for Aleft

lower < Aleft < −0.12 the

cross-correlation approaches -1. For this range of am-
plitudes a solitary wave that induces rotations with di-
rection opposite from those excited by the left-initiated
soliton is detected at the right end after collision - a clear
signature of an anomalous collision dynamics that results
in the (partial or total) reflection of the right-initiated
soliton.

Next, we consider the effect on the collision of both
Aleft and Aright. The heat map shown in Fig. 2B con-
firms that, while typical collisions that do not alter the
left-initiated soliton (resulting in a cross-correlation that
approaches 1) occur when the two colliding solitons in-
duce rotation of the same direction (i.e. AleftAright > 0),
anomalous collisions that change the left-initiated pulse
(leading to a cross-correlation � 1) may also exist when
two colliding solitons induce rotations of opposite direc-
tion (i.e. AleftAright < 0). We then construct a plot
analogous to that shown in Fig. 2B, but focused on the
right-initiated pulses by considering the cross-correlation
between θN−10(t < tc) and θ10(t > tc) (see Fig. S7). By
combining Fig. 2B with Fig. S7, we find that four differ-
ent scenarios are possible upon collision (see Fig. 2C): (i)
both solitons penetrate, as typical for collisions between
solitons (see yellow area in Fig. 2C and Figs. 1D-E); (ii)
both solitons are reflected - a clear signature of an anoma-
lous collision (see dark blue area in Fig. 2C and Figs. 1G-
H); (iii) one soliton is blocked and the other penetrates
- again signature of an anomalous collision (see shallow
blue area in Fig. 2C and Fig. 2D); (iv) one or no soliton
travels through the system due to the existence of the
amplitude gap, so that no collision occurs (see green area
in Fig. 2C and Fig. 2E). Therefore, our numerical inves-
tigation describes quantitatively all possible two-solitons
heads-on collisions and provides a complete picture of
the collision dynamic between the pulses supported by
the system.
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The results of Figs. 1 and 2 reveal that our system
supports anomalous collisions that alter the characteris-
tics of the solitons. Such surprising phenomenon can be
fully explained via the concept of amplitude gaps. The
large rotations generated by a soliton effectively enlarge
the amplitude gap for pulses that induce rotations of op-
posite sign, stopping their propagation when they come
close enough. To demonstrate this important point, we
freeze solitons of different amplitude Af in the middle of
the chain and numerically investigate their effect on the
propagation of solitary waves initiated at the left end.
Specifically, we consider a chain in which the i-th pair
of crosses is rotated according to theoretical solution of
soliton (see Fig. 3A and Supplementary Materials), ex-
cite pulses of different amplitude Aleft at its left end and
investigate the interaction between the left-initiated soli-
ton and the frozen perturbation by looking at the cross-
correlation between θ10(t) and θN−10(t). The numerical
results reported in Fig. 3B clearly indicate that there is
a well-defined region in the Aleft-Af space resulting in
left-initiated solitons that do not reach the right end of
the chain (note that in this region the cross-correlation is
close to zero everywhere, as there is no propagating right-
initiated pulse that can be reflected). Notably, we also
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FIG. 3. (A) A N = 500 chain with a frozen soliton placed
in the middle of it. (B)-(C) Numerically obtained cross-
correlation between θ10(t) and θN−10(t) as a function of Aleft

and Af with frozen solitons of width defined by (B) Wf and
(C) W eff

f .

find that the lower thresholds of the low cross-correlation
region obtained considering a frozen perturbation or a
right-initiated pulse follow similar trends (see Fig. 3B).
However, there is a significant quantitative discrepancy
between them that arises because the left-initiated soli-
ton interacts for a time ∆t ∝ (cleft + cright)

−1 with the
right-initiated pulse (cleft and cright denoting the veloci-

ties of the left-initiated and right-initiated solitary waves
before collision, respectively) and ∆t ∝ c−1

left with the
frozen perturbation. To overcome this difference, we
equate the interaction times by shrinking the width of
the frozen soliton according to

W eff
f =

cleft

cright + cleft
Wf , (6)

where cright is given by Eq. (3) with A = Af. Remark-
ably, by replacing the width of the frozen solitons Wf

with W eff
f , we find that the boundaries of the low cross-

correlation region match extremely well the thresholds
Aleft

upper and Aleft
lower (see Fig. 3C). As such, our analy-

sis reveals that the anomalous collisions observed in our
system are a consequence of the soliton large-amplitude
characteristics, which modify the properties of the under-
lying media. Specifically, the large rotations induced in
the chain by a pulse enlarge the amplitude gap for soli-
tons that excite rotations of opposite direction and this
may block their propagation.

While in Figs. 1-3 we focus on the interaction between
pulses initiated at the two ends of the chain, anomalous
collisions can also be triggered when the solitons are se-
quentially excited at the same end. To demonstrate this,
we numerically study the collision between two solitons
with amplitude Aleft,1 and Aleft,2 initiated at the left end
at time t1 = 0 and t2 = 0.3s, respectively. We find that
if the two solitons excite rotations of the same sign and
the second one is faster, the second pulse penetrates and
overtakes the first one, and neither of them change their
amplitude, shape or velocity (see Fig. 4A). By contrast,
if the two solitons induce rotations of opposite sign, a
single pulse emerges from the collision with the same di-
rection as the first one, but with larger amplitude and,
therefore, lower velocity (see Fig. 4B).

Having demonstrated that our system can support
anomalous collisions that alter the characteristics of the
interacting solitons, we now explore how these unusual ef-
fects can be exploited to actively manipulate and control
the propagation of pulses. First, we note that anoma-
lous collisions provide opportunities to remotely induce
changes in the propagation velocity of a soliton, as they
can either reverse (see Figs. 1H-I), increase (see Fig. 2D)
or lower (see Fig. 4B) the pulses speed (see also Fig.
S8A). Second, we find that anomalous collisions can be
exploited to probe the direction of the rotations of a
pulse by monitoring the ”echo” of a probing soliton (see
Figs. 4C and S8). Third, if the direction of rotations
excited by the soliton is known, we can block its prop-
agation by sending a sequence of relatively small pulses
with opposite rotation direction (see Figs. 4D and S8).

To summarize, our experiments show that anomalous
interactions can occur for vector elastic solitons sup-
ported by a mechanical metamaterial based on rigid ro-
tating units. While two solitons that induce rotations
of the same direction penetrate each other when they
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FIG. 4. (A)-(B) Rotations of the pairs of crosses as nu-
merically found when considering two solitons of amplitude
Aleft,1 and Aleft,2 ini tiated at the left end at time t1 = 0 and
t2 = 0.3s. (Aleft,1, Aleft,2)=(0.4, 0.3) in (A) and (0.4, -0.3) in
(B). (C) A soliton with amplitude Aright = −0.18 is excited
from the right end as a probing soliton to detect the rotation
direction of the main soliton of amplitude Aleft = 0.4. (D) An
amplitude Aleft = 0.4 soliton is destroyed by six small solitons
of amplitude Aright,k = −0.2, (with k = 1, ..., 6).

meet, two solitons with opposite rotational component
may repel each other and change both their amplitudes
and velocities upon collision. Remarkably, our numeri-
cal analyses can fully explain the experimental findings
and provide a complete description of these exotic two-
soliton interactions. The geometric changes induced by
one soliton significantly enlarge the effective amplitude
gaps for other solitons with opposite rotational compo-
nent and may block their propagation when they come
close enough. We envision that the reported anomalous
collisions between solitons could be used for remote con-
trol of the propagating nonlinear pulses, as they result in
changes of the pulse velocity that can be engineered to
remotely detect, change or destruct high-impact signals.
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