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Quantum Rabi model with two-photon relaxation
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We study a cavity-QED setup consisting of a two-level system coupled to a single cavity mode
with two-photon relaxation. The system dynamics is modeled via a Lindblad master equation
consisting of the Rabi Hamiltonian and a two-photon dissipator. We show that an even-photon
relaxation preserves the Z2-symmetry of the Rabi model, and provide a framework to study the
corresponding non-Hermitian dynamics in the number-parity basis. We discuss the role of different
terms in the two-photon dissipator and show how one can extend existing results for the closed
Rabi spectrum to the open case. Furthermore, we characterize the role of the Z2-symmetry in the
excitation-relaxation dynamics of the system as a function of light-matter coupling. Importantly, we
observe that initial states with even/odd parity manifest qualitatively distinct transient and steady
state behaviors, contrary to the Hermitian dynamics that is only sensitive to whether the initial
state is parity-invariant or not. Moreover, the parity-sensitive dynamical behavior is not a creature
of ultrastrong coupling and is present even at weak coupling values.

Introduction. The Rabi model [1] describes the quan-
tum interaction between a two-level system (TLS) and
a bosonic mode. Despite its simple form, the Rabi
model represents an important theoretical building block
of quantized matter-field interactions and quantum infor-
mation processing. It is applicable to a broad range of
quantum phenomena spanning microscopic to mesoscopic
systems, finding realizations in a wide range of quan-
tum platforms, including cavity-QED [2–5], circuit-QED
[6–11], nanoelectromechanical [12–15], quantum-dot [16],
and trapped-ion [17, 18] systems.

Light-matter interactions within the Rabi model con-
sist of rotating (resonant) and counter-rotating (non-
resonant) contributions. Traditionally, Rabi dynamics is
analyzed under the rotating-wave approximation (RWA),
resulting in the simplified Jaynes-Cummings (JC) model
[19], valid when the coupling constant is much weaker
than the TLS and mode frequencies. From the per-
spective of symmetry, RWA fictitiously extends the Z2-
symmetry of the model to a U(1)-symmetry, making the
total excitation number the second conserved quantity
besides the Hamiltonian and therefore facilitates analyt-
ical solutions. The JC model has been employed suc-
cessfully to describe the dynamics of most cavity-QED
setups [2–5]. However, with the advent of superconduct-
ing quantum devices, it has become feasible to reach ul-
trastrong [20, 21] and, more recently, deep-strong [22]
regimes of interactions. The breakdown of RWA in these
regimes motivated various theoretical efforts to revise the
Rabi model. First, generalized versions of RWA [23, 24]
were introduced that captures correctly stronger cou-
plings. Second, despite the contemporary understand-
ing, Braak [25] argued that the Z2-symmetry of the Rabi
model is sufficient for its integrability, showing that the
regular spectrum in each parity subspace can be obtained
from the roots of a transcendental function. Moreover,
Chen et. al provided a more physical derivation of the
Rabi spectrum using Bugoliubov transformations [26],
contrary to the Bargmann representation [27] employed

FIG. 1. Schematic of system consisting of a two-level sys-
tem coupled to a single cavity mode with two-photon relax-
ation. We discuss possible physical realization of such a relax-
ation process in the Supplementary Material (SM), revisiting
Refs. [33, 34]

by Braak. These early studies paved the way toward
ongoing developements of analytical and perturbative
methods for determining the spectrum, eigenmodes, and
dynamics of the Rabi model under different parameter
regimes [28–32].

To date, however, most works have focused primar-
ily on ideal, closed (Hermitian) properties of the Rabi
model, while role of Z2-symmetry in realistic, open (non-
Hermitian) scenarios remains an open question. An even
exchange of excitations between a cavity mode and envi-
ronment conserves the Z2-symmetry. The latter is partic-
ularly important given emerging studies of the dynamics
of a single cavity mode under two-photon relaxation [35–
42]. Such a relaxation process has been recently imple-
mented in circuit-QED [34] following a four-wave mixing
scheme proposed first by Wolinsky and Carmichael [33]
(See SM [43]). A major motivation behind recent studies
of even-photon relaxation processes is their application
to realization of dynamically protected, universal quan-
tum computing paradigms [44–47], in which the quan-
tum information is encoded in logical qubits consisting
of Schrödinger cat states with distinct parity that ex-
hibit reliable protection to photon dephasing and single-
photon relaxation errors [44].

In this article, we generalize the theory of Z2-symmetry
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of the Rabi model to the open quantum case. We
first review the spectrum of the closed Rabi Hamilto-
nian, providing analytical recursion relations for both
the eigenfrequency and eigenmodes of the system. Our
analysis and calculation are performed in the (cavity)
number-(overall) parity representation [48], where the
Z2-symmetry of the model is explicit. For the open sce-
nario, we consider a Lindblad master equation [49, 50]
of the Rabi Hamiltonian with two-photon dissipation for
the cavity mode. To analyze its spectral properties, we
employ an effective Hamiltonian obtained by keeping di-
agonal decay terms, while neglecting the off-diagonal col-
lapse in the two-photon dissipator. This phenomenolog-
ical treatment provides a reliable approximation to the
complex eigenfrequencies, but not necessarily the eigen-
modes and ground state. While an exact definition of
a full effective Hamiltonian exists, mapping the Lind-
blad dynamics into a norm-preserving Schrodinger equa-
tion [51], analytical treatment of its associated spectrum
seems prohibitive due to its significantly larger Hilbert
space compared to the phenomenological model (See SM
for comparison). We follow numerical integration of the
Lindblad equation for studying the dynamics, while the
effective phenomenological Hamiltonian is primarily used
for approximate analytical discussion of the spectrum
and a better understanding of the observed dynamics.

Model. Our system consists of a TLS coupled to a sin-
gle cavity mode, engineered such that single-photon is
negligible compared to two-photon relaxation, constrain-
ing it to exchange only pairs of photons with the environ-
ment (Fig. 1). We model the system dynamics via the
Linbdlad equation:

˙̂ρ(t) = −i[Ĥs, ρ̂(t)] + 2κc2D[â2]ρ̂(t), (1a)

Ĥs ≡ νcâ†â+
νq
2
σ̂z + g

(
â+ â†

) (
σ̂− + σ̂+

)
, (1b)

with νq, νc, and g denoting the qubit frequency, cav-
ity frequency, and light-matter coupling, respectively.
Two-photon relaxation is described via the dissipator,
D[â2](•) = â2(•)(â†)2− 1

2

{
(â†)2â2, (•)

}
, with κc2 denot-

ing the two-photon relaxation rate.

We next transform the Lindblad Eq. (1a) such that the
Z2-symmetry of the Rabi Hamiltonian and two-photon
relaxation become explicit (See SM). In particular, we
define the overall parity operator for the system as:

P̂ = P̂qP̂c = eiπσ̂
+σ̂−eiπâ

†â = −σ̂zeiπâ
†â. (2)

The Z2-symmetry of the Rabi Hamiltonian (1b) means
that P̂ †ĤsP̂ = Ĥs. Consequently, the Hilbert space can
be partitioned into parity subspaces having even (plus)
and odd (minus) total excitation numbers:

p = +1 : {|0, g〉 , |1, e〉 , |2, g〉 , |3, e〉 , |4, g〉 , . . .}, (3a)

p = −1 : {|0, e〉 , |1, g〉 , |2, e〉 , |3, g〉 , |4, e〉 , . . .}. (3b)

number-excitation basis |n, g〉 |n, e〉
number-parity basis |n, (−1)n〉 |n, (−1)n+1〉

TABLE I. Correspondence between (cavity) number-(qubit)
excitation and (cavity) number- (overall) parity bases.

The adjacent states in each subspace are coupled via
both rotating or the counter-rotating terms. If we ne-
glect the latter, each subspace is reduced into a col-
lection of number-conserving Jaynes-Cummings doublets
{|n− 1, e〉 , |n, g〉}, given by:

p = +1 : {|0, g〉}, {|1, e〉 , |2, g〉}, {|3, e〉 , |4, g〉}, . . . ,
(4a)

p = −1 : {|0, e〉 , |1, g〉}, {|2, e〉 , |3, g〉}, . . . . (4b)

Defining a new set of bosonic operators, b̂ ≡ σ̂xâ, and
replacing σ̂z in terms of the parity operator of Eq. (2),
one can rewrite that the Rabi Hamiltonian (1b) as [48]

Ĥs = νcb̂
†b̂− νq

2
eiπb̂

†b̂P̂ + g
(
b̂+ b̂†

)
. (5)

The parity P̂ and bosonic b̂ operators commute, thus
provide a complete basis for the Hilbert space defined
as b̂†b̂ |n, p〉 = n |n, p〉 and P̂ |n, p〉 = p |n, p〉 for n =
0, 1, 2, . . . and p = ±1, respectively. Table I summarizes
the correspondence between the (old) number-excitation
and (new) number-parity bases.

Next, we rewrite the original Lindblad Eq. (1a) in this
basis, starting by observing that the two-photon dissipa-
tor is also invariant under the parity transformation, i.e.
P̂ †D[â2]P̂ = D[(−â)2] = D[â2], where â2 = (σ̂xâ)2 = b̂2

also implies that D[â2] = D[b̂2]. In the quantum treat-
ment of dissipation, the two contributions to the dissipa-
tor are described by decay and collapse terms. The for-
mer represents the rate at which a quantum state loses
probability while the latter represents the rate at which
lower states in the excitation ladder receive probability,
in such a way that the net probability is conserved in

time, i.e. Tr
(
D[b̂2]ρ̂

)
= 0. Separating the two contribu-

tions, one can re-express the Lindblad Eq. (1a) to yield,

˙̂ρ(t) = −i
[
Ĥs,efρ̂(t)− ρ̂(t)Ĥ†s,ef

]
+ 2κc2b̂

2ρ̂(t)(b̂†)2, (6a)

with Ĥs,ef denoting the phenomenological effective
Hamiltonian as

Ĥs,ef = νcb̂
†b̂− νq

2
eiπb̂

†b̂P̂ + g
(
b̂+ b̂†

)
− iκc2(b̂†)2b̂2.

(6b)

Neglecting the coupling induced by collapse, the last term
in Eq. (6a), the dissipative dynamics is approximated by
Ĥs,ef. This framework is a middle ground in which the
unitary part of the system dynamics is treated quantum
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FIG. 2. Phenomenological open Rabi eigenfrequencies ωn,p ≡
νn,p − iκn,p for νq = 0.8νc and κc2 = νc/40. a) Real part
(frequency), b) imaginary part (decay rate), and c) complex
spectrum as a function of light-matter coupling g. Solid lines
in a) show the result for the closed (κc2 = 0) case while dotted
lines are for κc2 = νc/40. The labels |ng,±〉 in a) and b) are
ordered based on values at g = 0. The frequencies in a) are
plotted relative to the ground state |0g,+〉.

mechanically, while the dissipation is treated phenomeno-
logically. Essentially, such an approach provides a good
approximation for the complex spectrum of the problem,
while ignoring proper characterization of the modal and
ground state information (See Sec. IV of the SM for fur-
ther discussion).

Spectrum. Here, we first revisit the spectrum of the
closed Rabi model and benchmark our solution against
those of Braak [25]. For the open case, we study the
impact of two-photon relaxation via Ĥs,ef of Eq. (6b). In
particular, we show that the typical solution obtained for
the closed case can be generalized to yield the complex
eigenfrequencies of the open system.

We begin with the eigenvalue problem for the closed
Rabi model, Ĥs,p |ng, p〉 = ωnp |ng, p〉, where ng la-
bels the eigenvalue/eigenmodes at a nonzero g and p is
the corresponding parity subspace. Expanding the un-
known eigenmodes in terms of the number-parity basis,

|ng, p〉 =
∞∑
m=0

cnp,m |m, p〉, one finds that the eigenfre-

quencies ωnp are obtained by the roots Gp(ωnp) = 0,
where Gp ≡ lim

m→∞
Gp,m and Gp,m satisfies the following

recursion relation (See SM):

Gp,m = αnp,mGp,m−1 − βp,m−1γp,mGp,m−2, (7)

subject to initial conditions, Gp,0 = αp,0 and Gp,1 =
αp,0αp,1 − βp,0γp,1. The coefficients in the recursion
Eq. (7) read

αnp,m ≡ ωnp −mνc +
p

2
(−1)mνq,

βp,m ≡ −
√
m+ 1g, γp,m ≡ −

√
mg.

(8)

Similarly, the corresponding eigenmodes are determined
by yet another recursion relation for the probability am-
plitudes cnp,m, given by:

αnp,mcnp,m + βp,mcnp,m+1 + γp,mcnp,m−1 = 0, (9)

with initial conditions, αp,0cp,0 + βp,0cp,1 = 0. An il-
lustrative example of the variation of the spectrum with
respect to g is shown in Fig. (2a), with parameters chosen
to compare our results with those in Fig. 2 of Ref. [25].

Within the phenomenological treatment of relaxation,
the system dynamics are determined by Ĥs,ef of Eq. (6b).
Here, we find that the recursion relations determin-
ing the eigenfrequencies (7) and eigenmodes (9) have
the same form as those of the closed system, except
that the coefficients αnp,m are modified as αnp,m →
αnp,m + im (m− 1)κc2 (See SM). To understand the
changes induced by phenomenological decay (compared
to the closed), we first consider the regime of zero cou-
pling g = 0, where the decay terms are diagonal in the
number basis. In this scenario, the mth bare cavity mode
acquires a decay rate of κc2m(m−1), resulting in nonzero
values for all cavity number states except the ground and
first-excited state, for each parity. As the coupling g is
turned on, the hybridization between the qubit and the
cavity mode allows these terms not only to induce addi-
tional decay, but also modify the real frequency of each
state. Figure 2 (dotted lines) shows such hybridization
as a function of g, as calculated by the phenomenologi-
cal model. We note that an analogous phenomenological
model based on the JC model can be solved analytically
and result in decay rates that plateau at ultrastrong cou-
pling values of g and hence micharacterizes the interplay
of light-matter coupling and two-photon relaxation (See
SM for comparison).

Excitation-relaxation dynamics. Here, we study the
dissipative dynamics of the system and discuss the role
of Z2-symmetry. For concreteness, we consider the sit-
uation in which the cavity is initially prepared with
even/odd number of photons, and describe the ensuing
dynamics of the cavity photon and qubit population as a
function of both time and g. In particular, we consider
two scenarios of starting with two (ρ̂(0) = |2, g〉 〈2, g|) or
three (ρ̂(0) = |3, g〉 〈3, g|) initial cavity photons and qubit
in ground state, as representatives of the plus/minus par-
ity subspaces. Due to pair-exchange of photons with the
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FIG. 3. Excitation-relaxation dynamics of the system of
Fig. (2) when the system is prepared with two cavity photons
and the qubit is in the ground state, i.e. ρ̂(0) = |2, g〉 〈2, g| =
|2,+〉 〈2,+|, as a function of light-matter coupling g. a) Cav-
ity photon number, b) qubit excitation number, and c) map-
ping of the bare state |2, g〉 to the eigenmodes in the even (+)
parity subspace. For convenience, we omit the parity index
in the x-axis. d) Steady state populations. Model parameters
are the same as in Fig. 2. The time axis in a) and b) is
normalized to half of the cavity round-trip time Tc ≡ π/νc.
The two-photon relaxation time reads Tκ2 ≡ 1/κc2 = 40Tc/π.
The cavity mode Hilbert space cut-off is chosen as Nc = 9.

environment, we intuitively expect states with even/odd
initial cavity photons to exhibit different transient and
steady state behavior.

First, consider the simplest case of g = 0. This choice
of parameter decouples the qubit and hence corresponds
to the problem of a single cavity mode with two-photon
relaxation, which has been studied in detail using mul-
tiple methods [38–42]. In this case, initial states hav-
ing even/odd numbers of cavity photons end up with
zero/one cavity photons in the steady state [52].

Next, we move on to characterize the interplay of two-
photon relaxation and the qubit for g 6= 0. Here, closed
form analytical solutions of the evolution operator at ar-
bitrary g seem intractable, and instead we employ nu-
merical integration of the Lindblad Eq. (6a). The time-
evolution of the cavity/qubit excitations as a function of
g is studied in Figs. 3 and 4 for the cases of two and
three initial cavity photons, correspondingly. In both
cases, it is generally observed that as g is increased, more
complex beatings between various normal modes emerge.
Such beatings can be approximately understood from the
mapping of the initial cavity state to the corresponding

a) b)

c)

0 0.5 1
0

0.5

1

d)

FIG. 4. Excitation-relaxation dynamics when the system is
prepared with three cavity photons and the qubit is in the
ground state, i.e. ρ̂(0) = |3, g〉 〈3, g| = |3,−〉 〈3,−|, as a func-
tion of light-matter coupling g. The figure follows the same
format as Fig. (3), except that the bare state |3, g〉 is instead
mapped to eigenmodes in the odd (-) parity subspace. Other
parameters are the same as in Fig. 3.

eigenmodes of the open Rabi model. This shows which
modes are more active at a given value of g in each par-
ity subspace (Figs. 3c and 4c). For example, for the case
of ρ̂(0) = |2, g〉 〈2, g|, the initial probability is shared be-
tween states |1g,+〉 and |2g,+〉 up to intermediate values
of g (0 < g . 0.5νc), beyond which |1g,+〉 and |3g,+〉
dominate. The corresponding frequency and decay rate
of the modes can be obtained from Figs. 2a-2b.

Despite this generic similarity, it is observed that due
to the non-trivial interplay of light-matter coupling and
two-photon relaxation, the two cases under consideration
have different transient and steady state characteristics.
For the case of two initial cavity photons, we observe that
the system reaches steady state on a time scale that is
more or less given by the two-photon relaxation rate κc2
(Figs. 3a-3b). On the other hand, in the case of three
initial cavity photons, the transient dynamics has more
features. Generally, at small g, the dynamics can be de-
scribed as follows (Figs. 4a-4b): First, a fast depletion
of the initial three cavity photons into one photon, with
timescale roughly determined by κc2. This can be seen
by the sharp transition of the cavity excitation number
from 3 to approximately 1 (red to blue in Fig. 4a). Sec-
ond, a slower depletion of the remaining cavity photon
after a large number of Rabi exchanges between the qubit
and the cavity, with timescale roughly determined by the
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decay rate of state |1g,−〉. Essentially, since two-photon
relaxation only allows pairs of exchange with the environ-
ment, the quantum state |1g,−〉 acts like a dark state at
g = 0 (i.e. |1, g〉). As g is increased, the decay rate of this
state is barely modified up until g/νc ≈ 0.5 (See Fig. 2b),
consistent with the observed long-lived excitations in the
qubit/cavity dynamics (Figs. 4a-4b).

Steady state excitations have also been studied as a
function of g in Figs. (3d-4d). In the case of two initial
photons, we observe that the steady state populations of
the cavity and qubit increase non-monotonically with in-
creasing g, exhibiting a local maximum close to g ≈ κc2.
The case of three initial photons is more complicated. For
small g < κc2, one observes fast relaxation of two pho-
tons, while the remaining photon energy is transferred to
the qubit at steady state. At intermediate values of g,
the excitation is shared between the cavity and the qubit
while at very large g, the qubit excitation saturates and
the cavity photon population increases linearly (Fig. 4d).
The overall increase observed in the steady state popu-
lations arises from the fact that the coupling in Eq. (6b)
appears effectively as an incoherent drive on the cavity.
Lastly, we note that the steady state quantities obtained
from the Linbdlad formalism will become less accurate at
large values of g, as one needs to account for the renor-
malization of the dissipator arising from the underlying
system-bath formalism [53], resulting in a Bloch-Redfield
master equation [54]. Using Rayleigh-Schrödinger per-
turbation theory, however, one can show that disspator
renormalizations are higher order in g compared to the
ones for the Hamiltonian. This leaves a window, at in-
termediate values of coupling, where the use of bare dis-
sipators is still justified.
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