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Using N -body simulations with massive neutrino density perturbations, we detect the scale-
dependent linear halo bias with high significance. This is the first time that this effect is detected
in simulations containing neutrino density perturbations on all scales, confirming the same finding
from separate universe simulations. The scale dependence is the result of the additional scale in the
system, i.e. the massive neutrino free-streaming length, and it persists even if the bias is defined
with respect to the cold dark matter plus baryon (instead of total matter) power spectrum. The
separate universe approach provides a good model for the scale-dependent linear bias, and the effect
is approximately 0.25fν and 0.43fν for halos with bias of 1.7 and 3.5, respectively. While the size of
the effect is small, it is not insignificant in terms of fν and should therefore be included to accurately
constrain neutrino mass from clustering statistics of biased tracers. More importantly, this feature
is a distinct signature of free-streaming particles and cannot be mimicked by other components of
the standard cosmological model.

Massive neutrinos play an important role in cosmology.
They contribute to the energy budget, which impacts the
expansion history, and their large momenta prevent them
from clustering along with cold dark matter (CDM) on
scales smaller than their free-streaming length, λfs. As a
result, the growth of matter fluctuations becomes scale-
dependent, with fluctuations on sub-free-streaming scales
growing more slowly. This effect suppresses the matter
power spectrum for k > kfs ∼ 1/λfs by an amount propor-
tional to the fraction of the matter budget composed of
neutrinos fν [1, 2]. Since the neutrino abundance is fixed
by the cosmology and deviations are well-constrained [3],
a detection of this effect determines the sum of the neu-
trino masses,

∑
mν .

Scale-dependent growth of structure from neutrinos
also fundamentally changes the way that the halo (or
galaxy or cluster) density field traces the underlying mat-
ter distribution. The relationship between the two can
be parameterized by a bias coefficient b, with δh ∼ bδc,
where δh is the halo number density contrast and δc the
CDM+baryon density contrast. In the standard ΛCDM
cosmology, halo formation is completely local and this
dictates that the bias approaches a constant on large-
scales [4–7]. Neutrinos, however, can travel cosmological
distances during structure formation. Consequently, the
local gravitational dynamics of particles forming halos
depends upon the history of neutrino density field out
to extremely large scales. This fact allows the halo bias
to become scale-dependent, where the scale introduced is
the neutrino free-streaming scale. Since the bias is itself
an observable, this effect offers another probe of

∑
mν .

Scale-dependent bias generated by massive neutrinos
was first predicted by Ref. [8], and later measured in N -
body simulations using the separate universe technique
in Ref. [9]. A related effect on the bias of cosmic voids

was identified in Ref. [10]. The effect on halos has not
yet been detected by any other neutrino simulation tech-
niques for two main reasons. First, to robustly detect
quantities of O(fν), a statistical error bar of O(fν/5) is
needed. This is challenging because current constraints
on
∑
mν correspond to fν . 0.01. Typically fν is ar-

tificially boosted to increase the amplitude of neutrino
effects by increasing the neutrino mass [11–29], rather
than the number density. This has the effect of push-
ing the free-streaming scale towards the nonlinear scale
where there are other, more mundane, sources of scale
dependence that are hard to disentangle. Second, since
the bias effect arises from the sensitivity to neutrino
perturbations at earlier epochs when the comoving free-
streaming length was larger, very large volume simula-
tions are needed. Specifically, for a relatively light neu-
trino mass (e.g. 0.05eV, which gives λfs ∼ 200Mpc today)
Gpc-scale simulations are needed. These simulations ex-
ist, but none of them have had the statistical power to
detect this effect [20–29].

In this letter, we perform simulations with neutrino
density perturbations that meet the above requirements.
The degenerate neutrino mass is set to mν = 0.05eV, so
that λfs is large enough and the nonlinear contamination
is limited. This choice also gives a free-streaming scale
consistent with that from the minimal mass of the nor-
mal and inverted mass orderings, and expectations given
current cosmological constraints (

∑
mν ≤ 0.12eV at 95%

[3]). To enhance fν so that effects can be probed by a
reasonable number of simulations, we increase the num-
ber of neutrino species to Nν = 28 to give fν ≈ 0.1. 1 We
set the size of the simulation box to L = 4000h−1 Mpc

1 We choose fν ≈ 0.1 so that the effect is large enough to be
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to probe the bias out to the largest scales. Cosmologi-
cal parameters are as follows: Hubble constant h = 0.7,
baryon density Ωb = 0.05, CDM density Ωc = 0.25, CMB
temperature Tγ = 2.725K, helium fraction YHe = 0.24,
the initial curvature power spectrum with the spectral
index ns = 0.95, and the amplitude which sets σ8 = 0.83
today for the power spectrum of CDM+baryon field.

These simulation choices pose two challenges. First, for
such light neutrino masses, a substantial fraction of neu-
trinos are relativistic at the simulation starting redshift
(e.g. at zi = 99, ρν(ai)/(ρν,0a

−3
i ) ∼ 1.5). Thus, simu-

lation methods that treat neutrinos as non-relativistic
particles can lead to unphysical effects.2 Second, on
the largest scales, radiation perturbations become im-
portant, and ignoring them will lead to incorrect growth
(see, e.g. Ref. [31]). To address these problems, we
include neutrino and photon perturbations on grids in
our gravity solver [32]. Concretely, the dynamics of the
CDM+baryon field is carried out by Gadget-2 [33], and
we modify the particle-mesh (PM) potential as

Φtot(k, a) = Φbc(k, a)

{
1 + 2

fγ(a)

fbc(a)

Tγ(k, a)

Tbc(k, a)
(1)

+
fν(a)

fbc(a)

Tν(k, a)

Tbc(k, a)

[
1 + 3c2s,ν(a)

]}
.

Here, Φbc is the CDM+baryon potential computed from
the simulation particles, fx = ρ̄x/(ρ̄γ + ρ̄ν + ρ̄bc),
Tx is the linear transfer function computed by CLASS

[34, 35], and we approximate the neutrino sound speed

c2s,ν(a) ≈ ˙̄ρν(a)/ ˙̄Pν(a) [35, 36]. Since baryons are treated
as CDM in simulations, hereafter CDM can refer to
CDM+baryons. CDM particles are then displaced ac-
cording to Φtot, instead of Φbc, to account for the pho-
ton and neutrino perturbations. We repeat the proce-
dure at each time step for the long-range force calcula-
tion. The simulation initial conditions are set up using
the Zel’dovich approximation [37] with the CDM+baryon
linear power spectrum and the scale-dependent growth
rate computed by CLASS at zi = 99. We set the number of
particles sampling CDM+baryon perturbations and PM
grids to be 15363 and 40963, respectively.

The accuracy of this approach relies on two assump-
tions. First, photon and neutrino perturbations are ne-
glected on scales smaller than the PM grid size: ∼
1h−1 Mpc. This is a good approximation because the
size of the PM grid is much smaller than the neutrino

detected by a reasonable amount of simulations, and is small
enough so that the neutrino effects are linear in fν .

2 One would have to wait until z ∼ 10 for half of the neutrino pop-
ulation to be non-relativistic (p . 0.1mν , say); simulations with
late starting redshifts will be inaccurate due to transients from
initial conditions [30], which may well be systematically different
between simulations with and without massive neutrinos.

free-streaming scale and the photon free-streaming scale
(the Hubble radius) at all redshifts of interest. Second,
while linear photon and neutrino perturbations of mode
k can affect the nonlinear evolution of CDM particles of
the same k, nonlinear evolution of neutrino and photon
perturbations is ignored. Relatedly, our calculation of
the total potential assumes that the photon and neutrino
perturbations have the same phases as CDM+baryon
perturbations on all scales. By construction, for our
neutrino mass λfs ∼ 200Mpc today, which is large in
comparison to the nonlinear scale (∼ 10Mpc) and also
the Lagrangian radii of halos (. 10Mpc). At higher
redshift, and for photons, the free-streaming scales are
even larger, so corrections from the nonlinear photon
and neutrino perturbations should be negligible. More-
over, it has been shown in Refs. [20, 38–41] that neutrino
clustering around halos is negligible as long as the in-
dividual neutrino masses have mν . 0.2eV. To check
the performance of our modification, we compare the
CDM+baryon power spectrum computed from simula-
tions and CLASS at z = 1 and 0. On linear scales of
1.57×10−3 ≤ k/(h Mpc−1) ≤ 10−2, the fractional differ-
ence is less than 0.5%,3 which is smaller than the effect
that we are targeting.

We identify halos using the Amiga Halo Finder [42, 43].
Since there are no neutrino particles in the simulations,
halos are identified using CDM particles alone. We
set the density threshold to ∆ = 200, and the mini-
mum number of particles in halos to be 20. We split
the dark matter halos between two catalogs: 2.75 ×
1013 ≤ Mh/(h

−1 M�) < 2.75 × 1014 and 2.75 × 1014 ≤
Mh/(h

−1 M�) < 2.75× 1015. The halo bias is defined as

b(k) = Phc(k)/Pcc(k) , (2)

where Phc and Pcc are respectively the halo-CDM and
CDM-CDM power spectra measured from simulations.
This definition greatly reduces the scale dependence of
the bias in comparison with a bias defined with respect
to the total (neutrino and CDM+baryon) matter den-
sity field [8, 21, 22, 44]. The alternative bias defini-
tion is appropriate when combining galaxy and lensing
data and can provide additional constraints on neutrino
mass [45–47]. In addition to the massive neutrino simu-
lations, we also run simulations with a reference cosmol-
ogy without (massive or massless) neutrinos. The rest
of the procedures and cosmological parameters are iden-
tical to simulations with massive neutrinos. In particu-
lar, photon perturbations are included in the potential
in eq. (1) and the scale-dependent CDM+baryon linear

3 One cannot achieve this level of agreement between simulations
and Boltzmann code if photon and neutrino perturbations are
not included. See e.g. Ref. [31] for the large-scale difference
between the full Boltzmann calculation and the two-fluid ap-
proximation without including radiation perturbations.
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power spectrum and growth rate are used to set the ini-
tial conditions.

Note that while we fix the value of σ8 of the
CDM+baryon power spectrum to be the same today for
the two cosmologies, this does not make the two power
spectra the same since they have different shapes. For
a fixed σ8, the massive neutrino cosmology has a larger
power spectrum for k � kfs and a slightly smaller power
spectrum on smaller scales. This difference makes the
function σ(Mh), the variance of perturbations smoothed
on scale R ∼ (Mh/ρc)

1/3, different at all redshifts, with
the massive neutrino cosmology having a larger ampli-
tude σ(Mh) at the high-mass end and smaller σ(Mh) at
the low mass end.4 As a result, halos of the same mass
will have different abundances and different bias factors
in each cosmology.

Figure 1 shows the halo bias measured from 40 simu-
lations with neutrinos (black circles) and without neutri-
nos (magenta triangles). The error bars show the error
on the mean. From top to bottom the panels show the
results for the halo catalogs of a low-mass bin at z = 0,
a high-mass bin at z = 0, and a low-mass bin at z = 1.
The error bars are much larger for high-mass halos at
z = 1 due to their rarity, so we do not show the result.
The most obvious feature in figure 1, is the difference in
the overall amplitude of the bias between the two cos-
mologies. As discussed, this is to be expected from the
difference in σ(Mh) and we find good agreement with
numerical predictions for halo bias that take σ(Mh) as
input (e.g. Ref. [48]). In particular, the relative ampli-
tude of σ(Mh) for the two cosmologies flips between low-
and high-mass halos, resulting a change in bias ampli-
tude seen in figure 1. The differences in the errors on the
bias are also in agreement with the analytic calculations
that take the stochasticity between the halo and matter
fields to be inversely proportional to the number density
of halos, giving σ2

b ∝ 1/(nPcc). For the halos in figure 1,
the difference in the power spectra dominates the differ-
ence in the error bars and our parameter choices give a
larger Pcc in the massive neutrino cosmology, resulting in
smaller errors on the bias on these scales for both mass
bins.

At present, the amplitude of the bias is not predicted
with sufficient accuracy to extract reliable constraints on
neutrino mass so it is usually treated as a free parameter
in cosmological analyses. Given this, we move on to ex-
amine the scale dependence of the bias. At the highest
k, the bias in both cosmologies has an upturn consistent
with k2 and k4 bias terms [49, 50], the amplitudes of
which are also typically treated as free parameters that
do not constrain cosmology [51]. The most interesting

4 The absence of neutrinos contributing to the global energy den-
sity also changes the expansion history, which changes the red-
shift evolution of σ8(z), σ(Mh, z), but this effect is subdominant.
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FIG. 1. Halo bias measured from 40 simulations with (black
circles) and without massive neutrinos (magenta triangles).
The errors bars show the error on the mean. From top to
bottom: low-mass bin at z = 0, high-mass bin at z = 0,
low-mass bin at z = 1. Each panel shows the best fits for
the bias in the massive neutrino simulations using the scale-
independent (red solid) and scale-dependent (green dashed)
models in eq. (3) and eq. (4). The blue dot-dashed lines show
the best-fit bias for the no-neutrino simulations using the
scale-independent model in eq. (3). The fits are performed
within 1.57 × 10−3 ≤ k/(h Mpc−1) ≤ 5 × 10−2. The reduced
χ2
ν values shown in the legend are estimated from variance

only.
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feature in figure 1, however, is the persistent difference
in the k-dependence of the biases at larger scales (e.g.
k ∼ 10−3 − 10−2h Mpc−1). These scales are well into
the linear regime and are therefore robust to nonlinear
contamination and baryonic effects. We fit the measure-
ments to two different bias models: (i) a model with
scale-independent linear bias,

b(k) = b1︸︷︷︸
≡bind

1

+bk2k
2 + bk4k

4 , (3)

and (ii) a scale-dependent model

b(k) = 1 + (b1 − 1)f(k)︸ ︷︷ ︸
≡bdep

1 (k)

+bk2k
2 + kk4k

4 . (4)

In both models there are three free parameters, b1, bk2 ,
and bk4 , each are fit separately for every mass bin,
redshift, and cosmology. The factor f(k) in eq. (4)
is a redshift- and cosmology-dependent function, taken
from the separate universe prediction for how the local
power spectrum changes in response to a long-wavelength
CDM+baryon perturbation δc(k) [9].5 Importantly, f(k)
does not depend on the mass of the halos. Photon pertur-
bations on horizon scales also introduce scale dependence
to the bias; the physics is identical to that of massive
neutrinos (the presence of a free-streaming length) but
the amplitude is much smaller because of the smaller
photon energy density so it can be neglected. In fit-
ting the parameters in eqs. (3)–(4) we use 1.57× 10−3 ≤
k/(h Mpc−1) ≤ 5× 10−2, and we have checked that our
fits are insensitive to the precise vale of kmax.

The red solid and green dashed lines show the best-fit
models of scale-independent and scale-dependent linear
bias to the simulations with massive neutrinos, respec-
tively. The blue dot-dashed line displays the best-fit
model of the scale-independent linear bias for the sim-
ulations without neutrinos. In the legend we show the
reduced χ2

ν values from the fit, which are computed using
the variance only, as we do not have enough simulations
to precisely measure the covariance matrix. We expect
the covariance matrix to be highly diagonal on scales
larger than 0.05h Mpc−1, but the reduced χ2

ν values may
be slightly underestimated. Thus, these numbers can
serve as a guide to the goodness-of-fit, but they should
not be used to compute p-values. We first examine the
result for the massive neutrino simulations. It is clear,
both visually and quantitatively through χ2

ν , that for all
halo catalogs, the scale-dependent linear bias model is a
better fit to the data than the scale-independent linear

5 Alternatively, f(k) can be modeled from the spherical collapse
in a region with a long-wavelength δc(k) [8, 36], but for massive
neutrinos the two approaches give equivalent predictions [9].

model for simulations with massive neutrinos. We em-
phasize that even if the halo bias is defined with respect
to the CDM+baryon power spectrum, instead of total
matter power spectrum as suggested by Refs. [21, 22],
the scale dependence persists and extends to scales where
nonlinearities are truly negligible. This is the first time
that scale-dependent linear halo bias is detected in simula-
tions with massive neutrino perturbations, hence further
confirming the finding from separate universe simulations
[9]. While we do not have measurements on scales larger
than ∼ 10−3h Mpc−1, we nevertheless show the predic-
tion for the scale-dependent bias there to illustrate that it
ultimately approaches a constant with k, on scales where
neutrinos have always clustered in the same way as CDM
and baryons.

We next examine the results for the simulations with-
out neutrinos. In all cases, the halo bias is statistically
consistent with being scale independent. More impor-
tantly, as we move to larger scales, the data points be-
come flatter, suggesting that there are no spurious scale-
dependent features on the largest scale in our simulations.

The presence of the scale-dependent linear halo bias
calls for more accurate modeling to extract neutrino in-
formation from the clustering statistics of biased trac-
ers. The separate universe calculation, which provides a
good model for the halo bias measured from our simula-
tions, predicts that bdep1 (k↓)/b

dep
1 (k↑) ≈ 1 + 0.25fν and

1 + 0.43fν for halo populations with bdep1 (k↑) = 1.7 and
3.5, respectively. Here, k↓ and k↑ denote wavenumbers
in the asymptotic regimes on either side of the neutrino
free-streaming scale. Since the linear halo power spec-
trum is proportional to (bdep1 )2, the neutrino effect will
be doubled at the leading order compared to the raw
bias. The effect is therefore small, but not negligible
in terms of fν and there are important consequences.
First, since the scale dependence of the linear bias is op-
posite to that of the CDM+baryon power spectrum (an
increase, as opposed to suppression at higher k), ignor-
ing it can lead to an underestimation of fν . Second, since
the size of the effect depends on both fν and b1, it in-
troduces a degeneracy between those parameters, which
can degrade the constraints on fν . On the other hand,
this scale-dependent linear bias is a distinct signature of
free-streaming particles that can exist only if there is an
additional scale in the system. In the standard cosmo-
logical model, only massive neutrinos provide this large-
scale characteristic length and so this signature offers a
smoking gun for their detection.

Neutrinos also imprint a characteristic signature on the
power spectrum: the change in the amplitude across the
free-streaming scale. Yet detecting this signature is chal-
lenging because cosmic variance fundamentally limits the
precision of measurements of the power spectrum on large
scales. In contrast, measurements of a deterministic lin-
ear bias as seen in figure 1 are not limited by cosmic
variance, but by the stochasticity between halos and the
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CDM+baryon field, which is thought to be small for halos
of very high number density [52]. A detection of scale-
dependent bias is therefore possible with even a small
number of Fourier modes spanning the transition scales
in figure 1 [45]. Moreover, the dependence of this ef-
fect on b1 allows for constraints on

∑
mν to be extracted

from the ratio of the bias factors of two different galaxy
populations within a single survey. Surveys that aim to
constrain the bias at horizon-scales to study primordial
physics may be of relevance [53].

Finally, we note that the separate universe formalism
used to predict f(k) in eq. (4) and figure 1 also predicts a
scale-dependent feature in the squeezed-limit bispectrum
[9, 54]. Unfortunately that signal is much smaller and we
estimate that roughly 10× more simulations are needed
to confirm a detection.
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[19] S. Bird, Y. Ali-Häımoud, Y. Feng, and J. Liu, Mon. Not.
Roy. Astron. Soc. 481, 1486 (2018), arXiv:1803.09854
[astro-ph.CO].

[20] F. Villaescusa-Navarro, S. Bird, C. Pena-Garay, and
M. Viel, JCAP 1303, 019 (2013), arXiv:1212.4855 [astro-
ph.CO].

[21] F. Villaescusa-Navarro, F. Marulli, M. Viel, E. Branchini,
E. Castorina, E. Sefusatti, and S. Saito, JCAP 1403, 011
(2014), arXiv:1311.0866 [astro-ph.CO].

[22] E. Castorina, E. Sefusatti, R. K. Sheth, F. Villaescusa-
Navarro, and M. Viel, JCAP 1402, 049 (2014),
arXiv:1311.1212 [astro-ph.CO].

[23] M. Costanzi, F. Villaescusa-Navarro, M. Viel, J.-Q. Xia,
S. Borgani, E. Castorina, and E. Sefusatti, JCAP 1312,
012 (2013), arXiv:1311.1514 [astro-ph.CO].

[24] E. Castorina, C. Carbone, J. Bel, E. Sefusatti, and
K. Dolag, JCAP 1507, 043 (2015), arXiv:1505.07148
[astro-ph.CO].

[25] K. Heitmann et al., Astrophys. J. 820, 108 (2016),
arXiv:1508.02654 [astro-ph.CO].

[26] H.-R. Yu et al., (2016), arXiv:1609.08968 [astro-ph.CO].
[27] J. D. Emberson et al., Res. Astron. Astrophys. 17, 085

(2017), arXiv:1611.01545 [astro-ph.CO].
[28] J. Adamek, R. Durrer, and M. Kunz, JCAP 1711, 004

(2017), arXiv:1707.06938 [astro-ph.CO].
[29] F. Villaescusa-Navarro, A. Banerjee, N. Dalal, E. Cas-

torina, R. Scoccimarro, R. Angulo, and D. N. Spergel,
Astrophys. J. 861, 53 (2018), arXiv:1708.01154 [astro-
ph.CO].

[30] M. Crocce, S. Pueblas, and R. Scoccimarro, Mon.
Not. Roy. Astron. Soc. 373, 369 (2006), arXiv:astro-
ph/0606505 [astro-ph].

[31] M. Zennaro, J. Bel, F. Villaescusa-Navarro, C. Carbone,
E. Sefusatti, and L. Guzzo, Mon. Not. Roy. Astron. Soc.
466, 3244 (2017), arXiv:1605.05283 [astro-ph.CO].

[32] J. Brandbyge and S. Hannestad, JCAP 0905, 002 (2009),
arXiv:0812.3149 [astro-ph].

[33] V. Springel, Mon. Not. Roy. Astron. Soc. 364, 1105
(2005), arXiv:astro-ph/0505010 [astro-ph].

[34] D. Blas, J. Lesgourgues, and T. Tram, JCAP 1107, 034
(2011), arXiv:1104.2933 [astro-ph.CO].

[35] J. Lesgourgues and T. Tram, JCAP 1109, 032 (2011),
arXiv:1104.2935 [astro-ph.CO].
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