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We present an analog of the phenomenon of orthogonality catastrophe in quantum many body
systems subject to a local dissipative impurity. We show that the fidelity F (t), giving a measure
for distance of the time-evolved state from the initial one, displays a universal scaling form F (t) ∝
tθe−γt, when the system supports long range correlations, in a fashion reminiscent of traditional
instances of orthogonality catastrophe in condensed matter. An exponential fall-off at rate γ signals
the onset of environmental decoherence, which is critically slowed down by the additional algebraic
contribution to the fidelity. This picture is derived within a second order cumulant expansion suited
for Liouvillian dynamics, and substantiated for the one-dimensional transverse field quantum Ising
model subject to a local dephasing jump operator, as well as for XY and XX quantum spin chains,
and for the two dimensional Bose gas deep in the superfluid phase with local particle heating. Our
results hint that local sources of dissipation can be used to inspect real-time correlations and to
induce a delay of decoherence in open quantum many body systems.

Introduction — Anderson’s orthogonality catastrophe
(OC) [1] is a paradigm in solid state physics [2] highlight-
ing the sensitivity of a gapless many-body ground state to
static and dynamical local perturbations. An X-ray ab-
sorption process creates into an electron gas a core hole
which acts as a static potential, provoking a catastrophic
response in the system: the ground states of the electron
gas, with and without the core-hole potential, are orthog-
onal – the overlap between the two scaling as a decaying
power law of the system size. Singular features manifest
in dynamical properties as well: the Green’s function of
the core hole has a power law decay at long times, de-
parting from a simple free particle behavior; in frequency
domain, close to the threshold energy, the X-ray absorp-
tion spectrum vanishes algebraically, signaling the sup-
pression of absorption processes in this energy window.
[3]. Orthogonality catastrophe has been corroborated in
a number of systems ranging from Luttinger Liquids [4]
to Kondo models [5, 6] and disordered metals [7], and
it has recently received novel attention [8–16], thanks to
experimental progresses in cold gases, where local excita-
tions can be created in a quantum many particle system
at ease [17, 18].

The connection among OC and the return probability,
or Loschmidt echo [9, 19–28], L(t), is a recent interesting
development in this evergreen problem. The overlap be-
tween the unperturbed ground state of a quantum Ising
chain at criticality, |ψ(0)〉, and the same state evolving
in the presence of a defect of strength δg along the trans-
verse field direction, |ψ(t)〉, exhibits an analogous alge-
braic scaling behaviour [29] to the one discussed above,

L(t) = |〈ψ(0)|ψ(t)〉|2 ∝ t−θ, with θ ∝ (δg)2 . The physi-
cal rationale behind the ’catastrophe’, stands in the un-
derlying criticality of the many-body system upon which

the perturbation is applied: the diverging characteristic
correlation length and times at the critical point, facili-
tate the spread of the local disturbance across the whole
system, making possible the orthogonality among the ini-
tial state and the evolved one as time increases. This set-
up can also be extended to non-equilibrium closed envi-
ronments [30]: the system is first sent out of equilibrium
by a quantum quench of a global Hamiltonian parame-
ter, and later subject to the action of a local potential,
resulting in a two-times orthogonality catastrophe which
may show such novel features as ageing dynamics [31].

In this work, we demonstrate that the phenomenon of
OC is not only exclusive to unitary dynamics, rather it
can also occur in a gapless quantum many-body system
when a local noisy or dissipative perturbation is suddenly
switched; this dissipative analog of the OC is presented
through a number of instances ranging from low dimen-
sional quantum spin chains to the Bose-Hubbard model
in the superfluid phase. In particular, we show the emer-
gence of a power law scaling in time for the fidelity (a
proper analogue of the Loschmidt echo for generic mixed
states) of a system with critical, or, in general, long range
correlations, in a fashion reminiscent of the OC in closed
gapless systems. However, contrary to traditional in-
stances of OC, the additional algebraic contribution to
the fidelity determines a critical slow down of decoher-
ence. The paradigm shift presented here for the OC can
be experimentally accessible as localised dissipations can
be tailored in ultracold gases [32–39], with the long-run
perspective to employ local dissipative channels to detect
gapless modes in open quantum many-body systems.

Orthogonality catastrophe from a Lindbladian
impurity— To illustrate this concept, we con-
sider as a minimal model the one dimensional
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quantum Ising chain [40] in a transverse field,
H0 = −J2

∑
i

[
σ̂xi σ̂

x
i+1 + gσ̂zi

]
, we prepare at time

t = 0 the system in its critical ground state (g = 1)
and suddenly switch at subsequent times t > 0 a
spin-dephasing Lindblad operator, L̂ = σ̂zj , acting on
a given site, j, of the chain. Using a Jordan-Wigner
transformation [40], the critical Ising chain can be
mapped into a one-dimensional system of gapless, free
fermions with a local dephasing noise, L̂ ∝ n̂j , occurring
at rate

√
κ, and proportional to the density nj , of

Jordan-Wigner fermions. The dynamics of this system
is accordingly ruled by the Quantum Master Equation
(QME)

ρ̇(t) = −i[H0, ρ(t)] + κL[ρ(t)], (1)

where L[ρ(t)] = L̂ρ(t)L̂† − 1
2{L̂†L̂, ρ(t)}, and with L̂ =

L̂†, L̂2 = 1 in this specific case. The dynamics ruled
by the QME with Hamiltonian, Ĥ0, and with a single
Hermitian Lindblad operator L̂ = σ̂zj , is equivalent [41,
42] to the stochastic Schrödinger evolution governed by

Ĥη(t) = Ĥ0 +
√
κη(t)L̂, (2)

where η(t) is a Gaussian white noise and L̂ is, for in-
stance, a local spin perturbation along the transverse
field direction, as in the case under study in this work.
The Lindblad evolution of the density matrix ρ̂(t) =
etLρ̂0 = 〈Ûη(t)ρ̂0Û

†
η(t)〉, can then be recovered aver-

aging over the fluctuations of the white noise, with
Ûη(t) the time evolution operator of the time-dependent
Schrödinger equation at a fixed noise realization η(t).
The Hamiltonian (2) renders therefore clearer the con-
nection of our setup to more conventional instances of
OC, where algebraic scaling of the Loschmidt echo has
been evidenced in quantum Ising models of the form (2)
without adding a noisy character to the local perturba-
tion [29, 43].

However, since the state of the system is mixed at
times t > 0, we need a generalized expression for the
Loschmidt echo in order to investigate the onset of an
analogue of OC in the dissipative critical quantum Ising
chain. A natural choice is represented by the Uhlmann
Fidelity [44, 45], which reduces to the Loschmidt Echo
when both states are pure. If instead only the initial state
is pure (as in the case under inspection in this work), we
observe that the Uhlmann Fidelity retains a convenient
expression

F (t) = 〈ψ(0)|ρ̂(t)|ψ(0)〉 = Tr [ρ̂(0)ρ̂(t)] , (3)

which is amenable to analytical calculations. Intuitively,
the Loschmidt echo for an open system is equivalent
(within Born approximation) to the Uhlmann Fidelity
of a given subsystem if the environment remains un-
affected during dynamics, since the latter can then be
traced out [45] (provided the initial density matrix is a
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FIG. 1. (Color online) Comparison between the fidelity F (t)
for a quantum Ising chain with a spin-dephasing impurity (red
line) and for the same Ising chain with a local defect on the
transverse field, at zero temperature [29] (green line) and at
finite temperature [30] (blue line). The asymptotic behavior
of the three curves is highlighted on the right. The local
lindbladian channel results in a slower decay of the fidelity
compared to the other two cases. Close to t . (

√
θ+θ)/γ the

fidelity in the dissipative Ising model transits from a concave
universal behaviour to the usual convex character typical of
isolated systems.

factorised product of the system and environment’s den-
sity matrices).

At the critical point, the quantum Ising chain reacts
to the presence of the local dephasing channel L̂, with a
fidelity which decays and scales at long times as

F (t) ∝ t+θe−γt, t� 1/J. (4)

The power-law character ∝ t+θ recalls the characteristic
algebraic response of a gapless quantum system to a lo-
cal perturbation [2, 3, 29], which signals the onset of the
phenomenon of orthogonality catastrophe. The exponent
θ = 8/π2(1 − 2n)2(κ/J)2, is, however, positive, contrary
to unitary incarnations of OC (n is the local fermion
density on the site where the dissipative perturbation is
applied, and it is a function of the transverse field, g, see
for instance [40]). This brings the qualitative difference
that a new, concave region (see also Fig. 1 and the dis-
cussion in the following section) appears in the universal
shape of F (t), as a result of the interplay between t+θ

and the exponential decay ∝ e−γt with decoherence rate
γ = 8κn(1 − n) – in contrast to the monotonic convex
behaviour of the Loschmidt echo in isolated systems. As
in ordinary instances of orthogonality catastrophe, the
power law term is superseded when the many-body envi-
ronment is away from criticality.

Cumulant expansion for Lindblad dynamics — In order
to find the long-time behaviour (4), we design a second-
order cumulant expansion for the fidelity suited for Lind-
blad dynamics, which generalises analogous methods de-
veloped for the calculation of the Loschmidt echo in iso-
lated systems [2, 29]. The key idea is to express F (t) in
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FIG. 2. (Color online) The rate of exponential decay, γ, and
its derivative as a function of the gap, (g − 1), in the para-
magnetic phase of the one dimensional quantum Ising chain
subject to local spin dephasing. Close to the critical point,
g → 1, the latter (blue line) exhibits a logarithmic divergence,
while the former (red line) is continuous.

the super-operator formalism [46]

F (t) = Tr
[
ρ̂(0)etLρ̂(0)

]
≡ (ρ0|etL|ρ0), (5)

where etL is the superoperator corresponding to the Lind-
blad dynamics in (1), acting on the supervector |ρ0) as-
sociated to the initial condition (the ground state of the
quantum Ising chain in this specific instance). Casting
F (t) into the form (5), makes it amenable to a stan-
dard perturbative expansion in interaction picture with
respect to the unperturbed (purely Hamiltonian) Liou-
villian H0, associated to the quantum dynamics of the
Ising model. Within this representation, we evolve the

density matrix, ρ̂I(t) = eiĤ0tρ̂(0)e−iĤ0t, starting from
the critical ground state of the Ising chain, and we recast
the fidelity using ρ̂I(t) as reference state,

F (t) = (ρI |T←exp

{
+

∫ t

0

dsLI(s)
}
|ρI), (6)

which can then be expanded in cumulants (see Supple-

mental Material (SM)),

F (t) = exp
{

+

∫ t

0

ds (LI(s))C0

+
1

2

∫ t

0

ds

∫ t

0

ds′ (T←LI(s)LI(s′))C0 + · · ·
}
.

(7)

In Eq. (7), T← is the time ordering operator, LI(s) is
the Liouvillian perturbation with its Lindblad operators
evolving under the Hamiltonian Ĥ0, we used ρ̂I(t) = ρ̂(0)
for the initial ground state, and the compact notation
(·)0 ≡ (ρ0|·|ρ0) has been adopted. For a single, Hermitian
dissipative channel the first two cumulants read

(LI(s))C0 = −2
(
〈L̂2〉0 − 〈L̂〉20

)
,

(T←LI(s)LI(s′))C0 = 4
(
|〈T←L̂(s)L̂(s′)〉0|2 − 〈L̂〉40

)
.

(8)
In order to gain insight into the first two terms of the

cumulant expansion (8), we write them in terms of con-
nected correlation functions of spin operators,

(LI(s))C0 = −2κ
(
1− 〈σ̂zj 〉20

)
, (9)

(T←LI(s)LI(s′))C0 =

= 8〈σ̂zj 〉20 ReG(s− s′) + 4|G(s− s′)|2, (10)

where G(s) = 〈σ̂zj (s)σ̂zj (0)〉 − 〈σ̂zj 〉20. The first cumu-
lant (9) is constant, and when integrated over time yields
a term proportional to t: this is the exponential decay
rate γ in Eq. (4). γ is continuous close to the critical
point g → 1, where it has, however, a diverging deriva-
tive (see also Fig. 2)

∂γ

∂g

∣∣∣∣
g→1

=
8− 2π

π2
κ log (g − 1) . (11)

This is a first imprint of criticality on the fidelity, al-
though similar features have also been found in the study
of decoherence induced on a two-level system coupled to
a one-dimensional quantum spin chain [47].

The second cumulant (10) contains, instead, the char-
acteristic features of the OC phenomenon, specifically,
the first contribution to (10) diverges logarithmically in
t after integration over the variables s and s′ (cf. Eq. (7)).
Collecting (9) and this leading contribution, we have the
following expression for the fidelity (see SM for details):

F (t) = exp
{
−γt+κ2

∫ t

0

ds

∫ t

0

ds′ReG(s−s′)+· · ·
}

= exp
{
−γt+4κ2(1−2n)2

∫
k,k′

V (k, k′)
1− cos(Ek + Ek′)t

(Ek + Ek′)2
+· · ·

}
.

(12)

In Eq. (12), V (k, k′) = sin(2θk) sin(2θk′) + 4 cos2(θk) cos2(θk′) is the same matrix element found
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in the second order cumulant expansion of [29], with
2θk = tg−1(sin k/(g − cos k)). This logarithmic diver-
gence is at the origin of the power law character of (4),
and it can be understood by power counting (the denom-
inator is ∝ (k + k′)2, V is finite, and integration over
momenta k,k′ is carried out twice). A double time in-
tegration over a term ∝ G(s − s′) appears also in the
second cumulant calculation of the Loschmidt echo in
an isolated system, causing as well a logarithmic diver-
gence in time and accordingly the typical algebraic scal-
ing ∼ t−θ′ [2, 3, 29, 30]. The circumstance that the same
quantity appears in the dissipative setup considered in
this work at the same level of cumulant expansion, con-
firms the physical intuition that also here critical cor-
relations are the genuine cause of algebraic scaling. The
same scaling argument shows that the term ∝ |G(s−s′)|2
from Eq. (10) is subleading with respect to the terms ap-
pearing in (12).

We finally comment on the impact of the algebraic
scaling ∝ t+θ in F (t) (cf. Eq. (4)). The fidelity is al-
ways monotonically decreasing, as it should be for a sys-
tem coupled to a Markovian bath where there cannot
be any revival of the information originally present in
the initial state. F (t) is apparently increasing for times
tJ . θJ/γ ∝ κ/J , with κ/J � 1, the small parameter
controlling the perturbative cumulant expansion; how-
ever, the algebraic scaling is only valid starting at times
of the order t ∼ 1/J (as it occurs also in OC for iso-
lated systems [29]), and therefore no actual grow occurs.
Nevertheless, F (t) displays a distinct feature compared
to OC phenomena in closed systems: the presence of a
gapless mode provokes the scaling ∝ tθ and decoherence
is actually slowed down. Furthermore, the fidelity at
early times is concave, see Fig. 1 above, and becomes
convex at later times. The inflection point lies indeed at
t∗J = (

√
θ+ θ)/γ, which is O(1) even for κ/J � 1. This

behaviour is general in the sense that it depends only
on the long-time properties of the critical correlations of
the model, and it constitutes a novelty of the dissipative
scenario.

Other models. We have tested the emergence of a dis-
sipative analogue of OC in other systems, ranging from
quantum spin chains with conserved local magnetization
(XX model) to the two dimensional Bose-Hubbard model
with dephasing. We focused on the onset of the scal-
ing term ∝ t+θ contributing to the fidelity, since aspects
related to monotonicity and concavity are based on the
generic structure of the perturbative cumulant expansion
rather than on specific details of the model at hand.

The simplest generalisation of the previ-
ous setup in one dimension is the XY spin
chain [48] described by the Hamiltonian ĤXY =
−J2

∑
i

[(
1+∆

2

)
σ̂xi σ̂

x
i+1 +

(
1−∆

2

)
σ̂yi σ̂

y
i+1 + gσ̂zi

]
, with

a local dissipative impurity, L̂ = σzj . For generic
∆ 6= 0, analytical results can be obtained from the

cumulant expansion of the previous section simply
replacing sin k → ∆ sin k. The latter substitution
does not alter the infrared scaling of Eq. (12), because
the quasi-particle energy of the fermions diagonalising
HXY , has still a linear infrared character as k → 0,
εk ∼ ∆|k|, implying that the fidelity has an algebraic
scaling contribution also in this model. When ∆ = 0,
the Hamiltonian HXY describes a XX quantum spin
chain [40], which conserves the total transverse magneti-
zation (M̂z ∝

∑
i σ̂

z
i ); the model is therefore equivalent

to a system of free fermions in one dimension at finite
density, known to undergo orthogonality catastrophe
when coupled to a local potential [2]. The dissipative
analogue holds as well, the main difference with the Ising
case being that the logarithmic divergence in Eq. (12)
comes from modes close to the Fermi surface, rather than
from those close to k = 0. In passing, this circumstance
highlights that criticality is not a necessary condition for
the onset of OC: the absence of a gap in the spectrum
is sufficient to induce the long-range correlations that
cause the algebraic scaling contribution to the fidelity.

Finally, we have considered the Bose-Hubbard
model [40] in d spatial dimensions, HBH =

−J∑〈i,j〉 b̂†i b̂j + U
2

∑
i n̂i(n̂i − 1), deep in the su-

perfluid phase (where excitations are gapless) and
subject to a local heating process described by L̂j = n̂j ,
at rate κ; despite the model is not at the critical point,
the absence of a gap is sufficient to develop long-range
correlations which make the model potentially prone to
OC. In the Hartree-Fock-Bogolyubov approximation,
the model reduces to a free Hamiltonian of Bogolyubov
quasi-particles; computations follow the perturbative
cumulant expansion (7) with the additional complication
that now L̂2 6= 1̂, which brings a new term

2Re

[
〈T←L̂2(s)L̂2(s′)〉0 − 〈L̂2〉20

]
, (13)

in Eq. (10). Employing scaling arguments, one can show
that the phenomenon of dissipative OC exists only in
d = 2, with a fidelity scaling as FBH(t) ∝ tΘe−Γt, where
Γ ∝ κn (1 +O(n)), Θ ∝ (κ/J)2(1 + 4n + O(n2)) and
n the density of bosons in the superfluid ground state.
In passing, we notice that the interaction strength, U ,
determines the time scales, t� (JUn)−1/2, for the onset
of the scaling form, FBH(t), of the fidelity in the Bose-
Hubbard model.

Conclusions and perspectives — In summary, we have
shown that the decoherence following the sudden switch
of a dissipative impurity on a gapless quantum many-body
system is slowed down due to the critical, long range cor-
relations persisting in the system. This phenomenon can
be interpreted as another manifestation of the Anderson
Orthogonality Catastrophe in the new context of driven-
dissipative systems, thanks to the analogy to the stochas-
tic quantum dynamics governed by the Hamiltonian (2).
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In fact, the potential is localized for every realization of
the noise, hence transitions it can induce are suppressed
in the low-frequency part of the spectrum as result of con-
ventional Orthogonality Catastrophe physics. The corre-
sponding absorption processes are inhibited in this energy
window, and heating is therefore partially slowed, as ex-
plicated by the occurrence of a power-law growth tθ to-
gether with the typical exponential decay e−γt.

A natural point to address is the transient nature of
the phenomenon, i.e., whether dynamics is capable to exit
the OC regime at longer times due to heating. Therefore,
as a future direction, we foresee a calculation of the fi-
delity for dissipative impurities with non-perturbative or
numerical methods, in order to inspect whether its uni-
versal shape is a precursor of a pure relaxational regime
entirely dominated by decoherence or whether it can per-
sist for asymptotically long times (as it might happen in
the context of quantum criticality in driven-dissipative
platforms [49, 50]).

A further option is represented by the extension of the
present study to the case of a non-Markovian impurity or,
equivalently, of a non-Markovian noisy transverse field
(see Eq. (2) above). In this scenario, a non-monotonic
behavior of the fidelity might be realisable due to the
backflow of information from the environment to the sys-
tem; accordingly, an intriguing possibility would be the
existence of a time window where an algebraic growth is
actually observable, unlike in the present case.

There is currently a research trend which aims at
extending traditional topics in statistical mechanics to
the domain of dissipative quantum many-body physics,
as phase transitions [51] or integrability [52–54]. Our
work articulates towards this direction; accordingly,
a natural next step to substantiate the concept of a
dissipative orthogonality catastrophe, would consist
in studying the response of driven-open fermionic or
bosonic gapless systems [55–57] to local disturbances.
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[56] M. Höning, M. Moos, and M. Fleischhauer, Phys. Rev.

A 86, 013606 (2012).
[57] B. Horstmann, J. I. Cirac, and G. Giedke, Phys. Rev. A

87, 012108 (2013).


