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We analyze quantum dynamics of strongly interacting, kinetically constrained many-body sys-
tems. Motivated by recent experiments demonstrating surprising long-lived, periodic revivals after
quantum quenches in Rydberg atom arrays, we introduce a manifold of locally entangled spin
states, representable by low-bond dimension matrix product states, and derive equations of motions
for them using the time-dependent variational principle. We find that they feature isolated, unsta-
ble periodic orbits, which capture the recurrences and represent nonergodic dynamical trajectories.
Our results provide a theoretical framework for understanding quantum dynamics in a class of con-
strained spin models, which allow us to examine the recently suggested explanation of ‘quantum
many-body scarring’ [Nature Physics 14, 745-749 (2018)], and establish a possible connection to the
corresponding phenomenon in chaotic single-particle systems.

Introduction. — Understanding non-equilibrium dy-
namics in closed quantum many-body systems is of fun-
damental importance. In ergodic systems, the eigenstate
thermalization hypothesis (ETH) provides a means to
describe their late-time, steady-state behavior by equi-
librium statistical mechanics [1–5]. The few known ex-
ceptions to this paradigm include exactly solvable, in-
tegrable systems [6–8], and strongly disordered, many-
body localized systems, which feature extensive number
of conservation laws [9–12]. At the same time, the dy-
namics of equilibriation and thermalization is not as well
understood. Concepts such as the ETH, while providing
requirements for a system to eventually relax, do not un-
ambiguously prescribe the mechanism nor the timescales
on which this occurs; interesting transient dynamics like
prethermalization can occur [6–8, 13–21]. Such non-
equilibrium phenomena are generally challenging to ana-
lytically analyze & simulate, and much progress has thus
been spurred by quantum simulation experiments in well-
isolated, controllable many-body systems [22–34].

Recently, experiments on Rydberg atom arrays demon-
strated surprising long-lived, periodic revivals after quan-
tum quenches [28], with strong dependence of equilibria-
tion timescales on the initial state. Specifically, quench-
ing from some unentangled product states, quick relax-
ation and thermal equilibriation of local observables was
observed, typical of a chaotic, ergodic many-body system.
Conversely, quenching from certain other product states,
coherent revivals with a well-defined period were instead
observed, which were not seen to decay on the experi-
mentally accessible timescales, a distinctively nonergodic
dynamical behavior. Most surprisingly, these strikingly
different behavior resulted from initial states that are all
highly excited with similar, extensive energy densities,
and are hence indistinguishable from a thermodynamic
standpoint. The apparent simplicity of the special, slowly
thermalizing initial states’ dynamics – periodic, coher-
ent many-body oscillations – therefore brings to question

whether they can be understood in a simple, effective
picture. In fact, recent theoretical work [35] suggested
an intriguing analogy of the oscillations with the phe-
nomenon of quantum scarring in chaotic single-particle
systems, where a quantum particle shows similarly long-
lived periodic revivals when launched along weakly un-
stable, periodic orbits of the underlying classical model
[36]. However, to date, a firm connection to the theory
of single-particle quantum scars [36] has not been estab-
lished.

In this Letter, we develop a theoretical framework
to analyze the quantum dynamics of a family of con-
strained spin models, which display similar phenomenol-
ogy of long-lived periodic revivals from certain special ini-
tial states. Specifically, we introduce a manifold of sim-
ple, locally entangled states respecting the constraints,
representable by a class of low bond dimension matrix
product states (MPS), and derive equations of motions
(EOMs) for them using the time-dependent variational
principle (TDVP) [38, 39]. We find that these EOMs sup-
port isolated, unstable, periodic orbits. By quantifying
the accuracy of this effective description, we show that
these closed orbits indeed capture the persistent recur-
rences, and hence signal slow relaxation of local observ-
ables, a form of weak ergodicity breaking in dynamics,
see Fig. 1(a,b). Furthermore, since the TDVP generates
a Hamiltonian flow in the phase space parametrizing this
(weakly entangled) manifold, one can associate our ap-
proach with a generalized “semiclassical” description of
many-body dynamics in constrained Hilbert spaces. Our
finding of periodic orbits in this description is therefore
suggestive in establishing the connection to the theory of
quantum scarring of single-particle systems of Heller [36].

Kinetically constrained spin models. — We consider
a family of interacting, constrained spin models and
demonstrate that they show atypical thermalization be-
havior for certain initial states. Consider a chain of L
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Figure 1. (a) Flow diagrams of θ̇e(t), θ̇o(t) for the model (1)
with s= 1/2. The color map gives the error γ, (5). There is an
isolated, unstable periodic orbit (red curve) describing oscil-
latory motion between |Z2〉 (green dot) and |Z′2〉 (blue dot),
with numerically extracted period T ≈ 2π× 1.51 Ω−1. Con-
versely, motion from |0〉 (red dot) proceeds towards a saddle
point where the error is large. (b): Dynamics of local observ-
able Sz

i (t). There are persistent, coherent oscillations in the
local observable for |Z2〉 with similar period, while |0〉 instead
shows quick relaxation and equilibriation towards a thermal
value predicted by ETH [37].

spin-s particles on a ring, with Hamiltonian

H = Ω
∑
i

PSxi P. (1)

Here, a basis on each site i is spanned by eigen-
states |n〉i of Szi + s Ii, with n= 0, · · · , 2s, and Sxi is
the spin-s operator in the x-direction. The projec-
tor P =

∏
i Pi,i+1 is a product of commuting local pro-

jectors Pi,i+1 = Ii⊗ Ii+1−Qi⊗Qi+1, with Qi = Ii−Pi
and Pi = |0〉i〈0|i, and constrains dynamics to a subspace
where at least one of two neighboring spins is in the state
|0〉, which has dimensionality d∼ ((1 +

√
8s+ 1)/2)L.

When s= 1/2, Eqn. (1) effectively models the experi-
mental setup of [28], where the constraint stems from
the Rybderg blockade mechanism (see also [40–44]).

The Hamiltonian (1) has a simple interpretation: each
spin rotates freely about the x-axis if both its neigh-
bors are in the state |0〉, while its dynamics is frozen
otherwise. Despite its apparent simplicity, the Hamilto-
nian is nonintegrable and quantum chaotic, as seen in
Fig. 2(a) from level repulsion in the energy eigenspec-
trum. The chaotic nature of the system is expected to
govern the nonequilibrium dynamics arising from a quan-
tum quench. For example, consider “simple”, unentan-
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Figure 2. (a) Level spacing statistics in the momentum-zero,
inversion-symmetric sector. Plotted is the r-statistics defined

by the average of rn =
min(sn,sn−1)

max(sn,sn−1)
where sn =En+1−En.

There is a clear albeit slow trend with Hilbert space dimen-
sion d towards Wigner-Dyson statistics in the GOE class, indi-
cated by r≈ 0.53, away from the integrable Poissonian (POI)
limit of r≈ 0.39 (for discussion of the slow convergence, see
[45, 46]). (b,c) Growth of entanglement entropy SA following
quenches from the |0〉 and |Z2〉 states, of subregions A be-
ing (b) six contiguous sites, (c) a single-site, for the s= 1/2
model. Total system size is L= 30.

gled initial states, specifically product states in the z-
basis that satisfy the constraints. All these states have
the property that they have the same energy density un-
der (1), corresponding to that of the infinite-temperature
thermal state, and are hence thermodynamically indis-
tinguishable. Under time evolution, one would expect
a quick relaxation of local observables (on the timescale
tr ∼Ω−1) to infinite-temperature ensemble values [37], in
accordance with ETH predictions [1–3, 47–50]. This be-
havior is indeed observed generically, as demonstrated
previously [41–44], and also in Fig. 1(b) for the lo-
cal observable Szi (t) from the initial state |0〉=⊗Li=1|0〉i
(s= 1/2). However, time evolution of the initial state

|Z2〉≡⊗L/2i=1 |0〉2i−1 |2s〉2i does not follow this expecta-
tion. As shown in Fig. 1(b), the same observable in-
stead unexpectedly exhibits long-lived, coherent oscilla-
tions with a well-defined period T ≈ 2π× 1.51 Ω−1. Fur-
thermore, it does not relax to, nor oscillate about, the
thermal value expected from ETH, at least on numeri-
cally accessible timescales and system sizes.

This striking departure from generic behavior is also
reflected in the growth of entanglement entropy (EE)
(Fig. 2(b,c)). While for generic initial states EE essen-
tially grows linearly and quickly saturates to that of a
random state [37], this is not the case for |Z2〉. In partic-
ular, the single-site EE drops periodically, indicating that
each spin is repeatedly partially disentangling itself from
the rest of the chain. This tantalizingly hints that the
motion for the |Z2〉 state lies within a low-entanglement
manifold of the Hilbert space, thereby possibly allowing
for a simple, effective description of dynamics.

Equations of motion from the TDVP. — Motivated
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Figure 3. (a) Geometrical depiction of the TDVP over a man-
ifold of states |ψ(z)〉 parameterized by z. The instantaneous
motion −iH|ψ(z)〉 is projected onto the tangent space at the
point, leading to motion on the manifold (green trajectory).

The norm of the vector orthogonal to the manifold, Γ = γ
√
L

(c.f. Eqn. (5)), is a measure of its accuracy. (b) MPS repre-
sentation of states |ψ(θ,φ)〉 (c.f. Eqn. (3)) used.

by these considerations, we analyze the dynamics of the
system using the TDVP on a suitable variational man-
ifold of simple, low entanglement states. For concrete-
ness, we focus first on s= 1/2. Starting from classical
spin configurations, i.e. products of unentangled coherent
states ⊗i|ϑi, ϕi〉 :=⊗i[cos(ϑi/2)|0〉i − ieiϕi sin(ϑi/2)|1〉i],
we construct states that respect the constraints set by P,
by explicitly projecting out neighboring excitations,

|ψ(ϑ,ϕ)〉 = P
⊗
i

|(ϑi, ϕi)〉, (2)

which is akin to a Gutzwiller projection to the con-
strained subspace [37, 51], see Fig. 3(b). Importantly,
(2) is weakly entangled, and can be written as a partic-
ular matrix product state (MPS) with bond dimension
D= 2 [37, 52]. We find it convenient to normalize (2) and
change to new variables (ϑ,ϕ)→ (θ,φ) via a non-linear
mapping [37], such that |ψ(ϑ,ϕ)〉/||ψ(ϑ,ϕ)||= |ψ(θ,φ)〉,
so that the MPS repesentation is given by

|ψ(θ,φ)〉 = Tr(A1A2 · · ·AL),

Ai(θi, φi) =

(
Pi|(θi, φi)〉 Qi|(θi, φi)〉
|0〉i 0

)
, (3)

and |(θi, φi)〉= eiφiseiφiS
z
i e−iθiS

x
i |0〉i, which is normal-

ized in the thermodynamic limit L→∞ (see too [53, 54]).
The generalization of (3) to spin-s then simply consists of
replacing the appropriate operators and states with the
spin-s analogs.

The TDVP respects conservation laws, and in par-
ticular conserves the energy of the Hamiltonian (1)
[37–39, 55]. On this general ground, we obtain that
φ̇= 0, and can set φ= 0, which is obeyed for ini-
tial product states in the z-basis [37]. Furthermore,

to describe the motions of the |0〉 and |Z2〉 states,
it suffices to focus on the submanifold of states with
a two-site translational symmetry, i.e. θi = θi+2. The
TDVP-EOMs are obtained by projecting the instan-
taneous motion of the quantum system onto the tan-
gent space of the variational manifold (Fig. 3(a)), and
read

∑
µ θ̇µ〈∂θνψ|∂θµψ〉=−i〈∂θνψ|H|ψ〉, for µ∈{o, e}

(standing for even(e) and odd(o) sites). A lengthy
but straightforward calculation [37] yields closed-
form, analytic expressions: θ̇e(t) = f(θe(t), θo(t)) and
θ̇o(t) = f(θo(t), θe(t)), with

f(x, y) = Ω
[
1− cos4s−2

(x
2

)
+ cos4s−2

(x
2

)
cos2s

(y
2

)
+2s sin

(x
2

)
cos6s−1

(x
2

)
tan

(y
2

)]
. (4)

These EOMs are coupled, nonlinear equations. Yet,
remarkably, we find that for each spin-s, there is an
isolated, unstable, periodic orbit C, as seen in the cor-
responding flow diagrams for s= 1/2 in Fig. 1(a), and
s= 1, 2, in Fig. 4(a,c). Furthermore, C includes the points
(θe, θo) = (π, 0), and (0,−π) (modulo 2π), corresponding

to |Z2〉 and its counterpart |Z′2〉=⊗L/2i=1 |0〉2i|2s〉2i−1 re-
spectively. Thus, the EOMs describe continual oscilla-
tions between these two product states (akin to a quan-
tum Newton’s cradle! [see also [22]]), which is manifestly
an athermal, nonergodic behavior [56]. The periods of os-
cillations from the EOMs can be determined by numerical
integration of Eq. (4), and the extracted values match ex-
cellently with those from numerical simulations of local
observables such as Szi (t), see Fig. 1(b) and Fig. 4(b,d).
This already indicates that the variational manifold (3) is
well suited to capture central aspects of the exact quan-
tum dynamics.

To further corroborate this fact, we quantify the error
in TDVP evolution as the instantaneous rate at which
the state evolving under the full Hamiltonian leaves the
variational manifold (see Fig. 3, [38, 39]), given by

γ(θ) = ||(iH + θ̇∂θ)|ψ(θ)〉||/
√
L, (5)

where we have normalized it to be an intensive quantity.
The numerically integrated error rates around the closed
orbits εC =

∮
C γ(θe(t) , θo(t))dt yield εC ≈ 0.17, 0.32, 0.41

for s= 1/2, 1, 2 respectively, which are small values com-
pared to neighboring trajectories [37], illustrating that
C is indeed a good approximation to exact quantum dy-
namics. We stress that the ability to capture the key
features of some dynamics of a chaotic many-body sys-
tem within a low entanglement manifold is remarkable.
This is in contrast to generic expectations; for example,
the trajectory beginning at (θe, θo) = (0, 0) for s= 1/2,
(i.e. the |0〉 state), instead traces out a path that termi-
nates in a saddle point where γ is large (see Fig. 1(a)),
indicating that this low entanglement manifold is unable
to capture the large growth of entanglement from this
state, as expected in a thermalizing system.



4

0 100 200 300
-1

-0.5

0

0.5

1

0 100 200 300
-2

-1

0

1

2

3

0

-3

2

1

-1

-2

-3 -2 -1 0 1 2 3

3

0

-3

2

1

-1

-2

-3 -2 -1 0 1 2 3

0.4

0.2

0

0.5

0.2

0

(a)

(c)

(b)

(d)

0.4

0.3

0.1

0.1

0.3

Figure 4. (a,c) Flow diagrams (4) and error γ for (a) s= 1, (c)
s= 2. The indicated periodic orbits (red curves) have periods
(a) T ≈ 2π× 1.64 Ω−1, and (c) T ≈ 2π× 1.73 Ω−1. Note that
points θo/e = θo/e± 2π are identified. (b,d) Relaxation of local
observable Sz

i (t) for (b) s= 1, (d) s= 2. One sees, similarly
to Fig. 1, quick relaxation of the |0〉 state toward a thermal
value predicted by ETH [37], while persistent oscillations for
|Z2〉, with similar periods in (a,c).

Discussion. — Our effective description of the persis-
tent oscillations seen in the many-body systems (1), in
terms of isolated, unstable orbits, provides a framework
to analyze a possible connection with the phenomenon
of quantum scarring in single-particle chaotic systems
[36]. There, special, weakly unstable classical orbits of
a single-particle, characterized by the condition λT < 1
(where T is the period of the orbit and λ the aver-
age Lyapunov exponent about the orbit) play a central
role: the persistent revivals and slow decay of a Gaussian
wavepacket (a quatum particle) launched along such an
orbit give rise to a statistically significant enhancement of
certain wavefunctions’ probability densities about these
orbits, above that expected of Berry’s conjecture [57].
Indeed, the apparent similarity between these phenom-
ena, and atypical signatures in the ergodic properties of
certain many-body eigenstates of the s= 1/2 model (1)
tied to the long-lived oscillations, motivated the recently
proposed explanation in terms of quantum many-body
scars [35, 46]. Our work provides a way to make such
an analogy firmer: even though our variational mani-
fold encompasses states that explicitly include quantum
entanglement, the TDVP-EOMs describe a Hamiltonian
flow in the corresponding phase space [38, 39, 58, 59], and
thus offer a notion of a “semiclassical trajectory” through
the many-body Hilbert space. A natural extension of the
condition λT < 1 characterizing the instability of orbits
is then the leakage out of the manifold εC =

∮
C γ(θ)dt< 1;

it would be interesting to relate this quantity to the Lya-
punov exponent of the EOMs [59]. Furthermore, the ef-
fect of these orbits on the nature of many-body eigen-
states deserve further study; however this has to be done
while contending with the thermodynamic limit, a notion
absent in the single-particle scenario.

Finally, we note that the equations of motion we ob-
tained can also be understood as the leading order,
saddle-point evaluation of a path integral for the con-
strained spin systems (1). In particular, the manifold of
states |ψ(θ,φ)〉 is dense and supports a resolution of the
identity on the constrained space, with an appropriate
measure µ(θ,φ) (see [37]), allowing the construction of a
Feynman path integral [58, 60–63]. The TDVP EOMs
extremize the action functional with the Lagrangian
L= i〈ψ|∂θψ〉θ̇+ i〈ψ|∂φψ〉φ̇−〈ψ|H|ψ〉, which evaluates
(for s= 1/2) to:

L =
∑
i

Ki(θ)[sin2

(
θi
2

)
φ̇i +

Ω

2
cos

(
θi+1

2

)
sin (θi) cos(φi)],

where Ki(θ) is given in [37]. This formulation provides a
framework, which can be used to systematically recover
quantum dynamics from the saddle-point limit, by in-
cluding higher-order corrections, i.e. fluctuations.
Conclusion. — In this Letter, we introduced and ana-

lyzed the dynamics of a family of constrained spin models
which show atypical thermalization behavior – long-lived,
coherent revivals from certain special initial states, simi-
lar to recent quench experiments in a quantum simulator
of Rydberg atoms. We derived an effective description of
these systems in terms of equations of motion for dynam-
ics of locally entangled spins and found that they host
isolated, unstable, periodic orbits, which correspond to
long-lived recurrences at the quantum many-body level.
Our results establish a possible connection to quantum
scarring in single-particle chaotic systems, and suggest a
framework for a generalization of the theory of quantum
scars by Heller [36], which is intimately tied to unstable
periodic orbits, to the many-body case.

While our analysis demonstrates that the phenomenol-
ogy of stable, long-lived oscillations from special initial
states extends to a number of interacting, constrained
models, one of the most important outstanding ques-
tions is related to their physical origin and the sufficient
conditions for their existence. A complementary Letter
[45] demonstrates that these models possess important
features resembling ergodic systems that are close to in-
tegrability, and that these features can be enhanced by
non-trivial deformations of the Hamiltonian. In [37], we
show that our variational description of the periodic dy-
namics is able to capture the effect of these deformations
by making the corresponding error γ smaller. While it is
currently unclear if this near-integrable-like behavior is
directly related to, required for, or follows from the ex-
istence of scar-like dynamics, these observations as well
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as the framework presented here provide both theoreti-
cal foundations and important physical insights on which
future studies of quantum dynamics can be based upon.
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