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Quantum error correction has recently emerged as a tool to enhance quantum sensing under
Markovian noise. It works by correcting errors in a sensor while letting a signal imprint on the
logical state. This approach typically requires a specialized error-correcting code, as most existing
codes correct away both the dominant errors and the signal. To date, however, few such specialized
codes are known, among which most require noiseless, controllable ancillas. We show here that
such ancillas are not needed when the signal Hamiltonian and the error operators commute; a
common limiting type of decoherence in quantum sensors. We give a semidefinite program for
finding optimal ancilla-free sensing codes in general, as well as closed-form codes for two common
sensing scenarios: qubits undergoing dephasing, and a lossy bosonic mode. Finally, we analyze the
sensitivity enhancement offered by the qubit code under arbitrary spatial noise correlations, beyond
the ideal limit of orthogonal signal and noise operators.

Quantum systems can make very effective sensors, but
as with most quantum technologies, their performance
is limited by decoherence. Typically, a quantum sensor
acquires a signal as a relative phase between two states
in coherent superposition [1–3]. Its sensitivity therefore
depends on how quickly this phase accumulates, and how
long the superposition remains coherent. The fundamen-
tal strategy to enhance sensitivity is then to increase the
rate of signal acquisition (e.g., with entanglement) with-
out equally reducing the coherence time [4]. These com-
peting demands pose a familiar dilemma in quantum en-
gineering: a quantum sensor must couple strongly to its
environment without being rapidly decohered by it.
Quantum error correction (QEC) has recently emerged

as a promising tool to this end. It is effective with DC
signals and Markovian decoherence, important settings
beyond the reach of dynamical decoupling, a widely-used
tool with the same goal [3, 5, 6]. The typical QEC sens-
ing scheme involves preparing a superposition of logical
states, and periodically performing a recovery operation
(i.e., error detection and correction). This allows a sig-
nal to accumulate as a relative phase at the logical level,
while extending the duration of coherent sensing. To
enhance sensitivity, however, great care must be taken
in designing a QEC code which corrects the noise but
not the signal. This new constraint is unique to error-
corrected quantum sensing, with no analog in quantum
computing or communication. Indeed, most QEC codes
developed for those applications do not satisfy the above
constraint, and cannot be used for sensing.
Recent works have begun to reveal how—and when—

new QEC codes could enhance quantum sensing. Ini-
tial schemes [7–12] assumed a signal and a noise source
coupled to a sensor in orthogonal directions (e.g., σz
and σx). A two-qubit code utilizing one probing qubit
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and one noiseless ancilla could restore unitary evolution
asymptotically (that is, for recoveries performed with suf-
ficiently high frequency) [7–9]. Refs. [13–15] generalized
these results, showing that given access to noiseless ancil-
las, one can find a QEC code for quantum sensing, pro-
vided the sensor’s Hamiltonian is outside the so-called
“Lindblad span”. (Intuitively, the Hamiltonian-not-in-
Lindblad-span, or HNLS, condition means that the sig-
nal is not generated solely by the same Lindblad error
operators one seeks to correct.) Ref. [16] adapted this
result to qubits with signal and noise in the same direc-
tion, and found numerical evidence that noiseless ancillas
were unnecessary in this common experimental scenario.
Noiseless, controllable ancillas are seldom available in

experiment. While they have often been assumed in con-
structing QEC codes for sensing, little is known to date as
to whether they are truly necessary, beyond limited coun-
terexamples [10–12, 16]. Similarly, Refs. [15, 16] showed,
through perturbative arguments, that QEC can still en-
hance sensitivity even when the HNLS condition is not
exactly met, but the exact sensitivity attainable is un-
known. Here we address both of these open questions.
First, we give a sufficient condition for error-corrected
quantum sensing without noiseless ancillas, and a corre-
sponding method to construct optimal QEC codes. We
then present new explicit codes for two archetypal set-
tings: qubits undergoing dephasing, and a lossy bosonic
mode. Finally, we introduce a QEC recovery adapted
for the former code, and give an exact expression for the
achievable sensitivity outside the HNLS limit.

QEC for sensing. We consider a finite d-dimensional
sensor under Markovian noise, whose dynamics is given
by a master equation [17–19]

dρ

dt
=L(ρ)=−i[ωH, ρ]+

∑

i

(

LiρL
†
i −

1

2
{L†

iLi, ρ}
)

, (1)

where ωH is the Hamiltonian from which ω is to be es-
timated, and {Li} are the Lindblad operators describing
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the noise. The Lindblad span associated with Eq. (1) is

S = span{I, Li, L
†
i , L

†
iLj , ∀i, j}, where span{·} denotes

the real linear subspace of Hermitian operators spanned
by {·}. One can use noiseless ancillas to construct a QEC
code, described by the projector P = |0l〉〈0l| + |1l〉〈1l|
onto the code space, which asymptotically restores the
unitary dynamics with non-vanishing signal

dρ

dt
= −i[ωHeff, ρ], (2)

where Heff = PHP 6∝ P , if and only if the HNLS condi-
tion is satisfied (H /∈ S) [15]. To go beyond this result,
we want to find conditions for QEC sensing codes that
do not require noiseless ancillas, but still reach the same
optimal sensitivity, as quantified by the quantum Fisher
information (QFI). According to the quantum Cramér-
Rao bound [20–23], the standard deviation δω of the ω-
estimator is bounded by δω ≥ (NexpF (t))

−1/2, where
Nexp is the number of experiments and F (t) is the QFI
as a function of the final quantum state. The bound is
asymptotically achievable as Nexp goes to infinity [23–
25]. For a pure state |ψ〉 evolving under Hamiltonian

ωH , F (t) = 4t2(〈ψ|H2|ψ〉 − 〈ψ|H |ψ〉2). δω ∝ 1/t is the
so-called Heisenberg limit in time—the optimal scaling
with respect to the probing time t [1–3]. The optimal
asymptotic QFI provided by the error-corrected sensing
protocol in Ref. [15], maximized over all possible QEC
codes, is given by

Fopt(t) = 4t2 min
S∈S

‖H − S‖2 ≡ 4t2 ‖H −S‖2 , (3)

where ‖·‖ is the operator norm.
Commuting noise. We address here the following

open questions: (i) Under what conditions the noise-
less sensing dynamics in Eq. (2) can be achieved with
an ancilla-free QEC code. (ii) Whether such code can
achieve the same optimal QFI in Eq. (3). We give a par-
tial answer to these questions in terms of a sufficient con-
dition on the signal Hamiltonian and the Lindblad jump
operators.

Theorem 1 (Commuting noise). Suppose H /∈ S and
[H,Li] = [Li, Lj ] = 0, ∀i, j. Then there exists a QEC
sensing code without noiseless ancilla that asymptotically
recovers the Heisenberg limit in t. Moreover, it achieves
the same optimal asymptotic QFI [Eq. (3)] offered by
noiseless ancillas.

Proof. AQEC sensing code recovering Eq. (2) should sat-
isfy the following three conditions [15]:

PHP 6∝ P, (4)

PLiP ∝ P, PL†
iLjP ∝ P, (5)

Eq. (5) is exactly the Knill-Laflamme condition to the
lowest order in time evolution [26–29] and Eq. (4) is
an additional requirement that the signal should not
vanish in the code space. We say the code corrects

the Lindblad span S if Eq. (5) satisfied. Without loss
of generality, we consider only a 2-dimensional code

|0(1)l〉 =
∑d

k=1

√

β
0(1)
k |k〉, where {|k〉}dk=1 is an or-

thonormal basis under which H and Li’s are diago-
nal. Define d-dimensional vectors 1,h, ℓi, and ℓij such
that (1)k = 1, (h)k = 〈k|H |k〉, (ℓi)k = 〈k|Li|k〉 and

(ℓij)k = 〈k|L†
iLj |k〉. Define the real subspace Sdiag =

span{1,Re[ℓi], Im[ℓi],Re[ℓij ], Im[ℓij ], ∀i, j} ⊆ R
d. The

optimal code can be identified from the optimal solu-
tion β̃ = β̃0− β̃1 of the following semidefinite program
(SDP) [30],

maximize 〈β,h〉 (6)

subject to ‖β‖1 ≤ 2, and 〈β, ℓ〉 = 0, ∀ℓ ∈ Sdiag. (7)

Here ‖x‖1 =
∑d

i=1 |xi| is the one-norm in R
d and

〈x,y〉 = ∑d
i=1 xiyi the inner product. Choosing the opti-

mal input quantum state |ψ0〉 = 1√
2
(|0l〉+ |1l〉), the QFI

is F (t) = t2
∣

∣〈β0 − β1,h〉
∣

∣

2
. Moreover, the optimal value

of Eq. (6) is 2minℓ∈Sdiag
‖h+ ℓ‖∞ with the argument of

the minimum denoted by ℓ⋄. Here ‖·‖∞ denotes the in-
finity/max norm, defined as the largest absolute value

of elements in a vector. The optimal solution β̃0(1) can
be obtained from the constraint that it is in the span
of vectors v such that 〈v,h+ ℓ⋄〉 is the largest (small-

est) [30]. In this case, F (t) = 4t2 ‖h−Sdiag‖2∞ is the
same as Fopt in Eq. (3) for noiseless ancilla. Therefore,

we conclude that β̃0(1) gives the optimal code.

Theorem 1 reveals that the need for noiseless ancil-
las arises from the non-commuting nature of the Hamil-
tonian and Lindblad operators. Indeed, we can find a
non-trivial example with [H,Li] 6= 0 for which there ex-
ist no ancilla-free QEC codes—even for arbitrarily large
d (see Supplemental Material [31]). Another interesting
feature of commuting noise is that it allows quantum er-
ror correction to be performed with a lower frequency, by
analyzing the evolution in the interaction picture [31].
We now consider two explicit, archetypal examples

of quantum sensors dominated by commuting noise.
In principle, a QEC code for each example could be
found numerically through Theorem 1. Instead, we in-
troduce two near-optimal, closed-form codes which are
customized to the application and the errors at hand.
Correlated Dephasing Noise. A common sensing sce-

nario involves a quantum sensor composed of N probing
qubits with energy gaps proportional to ω [3]. For such
a sensor to be effective, the qubits’ energy gaps must de-
pend strongly on ω, which in turn makes them vulnerable
to rapid dephasing due to fluctuations in their energies
from a noisy environment [32–37]. Assuming for simplic-
ity that each qubit has the same dephasing time T2, the
generic Markovian dynamics for the sensor is

dρ

dt
= −i[ωH, ρ] + 1

2T2

N
∑

j,k=1

cjk

(

ZjρZk −
1

2
{ZjZk, ρ}

)

.

(8)
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Here, H = 1
2h · Z where Z = (Z1, . . . , ZN ), so qubit

j has an energy gap ωhj . The correlation matrix C =
(cjk)

N
j,k=1 describing the spatial structure of the noise

can be quite general, e.g. depending on their coupling to
a nearby fluctuator or a common resonator. In partic-
ular, cjk ∈ [−1, 1] describes the correlation between the
fluctuations on qubits j and k, with cjk = 1,−1 and 0
signifying full positive, full negative, and the absence of
correlations, respectively.

Eq. (8) can be converted to the form of Eq. (1) by di-
agonalizing C (Cvj = λjvj) with an orthonormal eigen-

basis. Concretely, Lj =
√

λjvj ·Z can be viewed as nor-
mal modes of the phase noise. The HNLS condition then
translates to h /∈ col(C), the column space of C, which
occurs when one normal mode u overlapping with H (i.e.,
vu · h 6= 0) has a vanishing amplitude, λu = 0. This
occurs generically in the limit of strong spatial noise cor-
relations, provided the noise is not uniformly global [16].
Observe that [H,Lj ] = [Lj , Lk] = 0 here, so Theorem 1
guarantees a QEC code without noiseless ancillas satu-
rating the optimal bound in Eq. (3). One such code, for
N ≥ 3, is given by

|0l〉=
N
⊗

j=1

(

cos θj |0j〉+i sin θj |1j〉
)

, |1l〉=X⊗N |0l〉 ,

(9)
where θ = 1

2 arccosb
⋄, defined element-wise, and b⋄ is

the solution of the following SDP:

maximize 〈b,h〉, subject to ‖b‖∞≤1, b⊥col(C). (10)

It is straightforward to show that the code in Eq. (9),
with this choice of b⋄, satisfies the QEC sensing con-
ditions (4)–(5). It works by correcting all non-vanishing
noise modes, but leaving a vanishing mode with the max-
imum overlap with H uncorrected, through which H af-
fects the logical state. Moreover, it achieves the optimal
asymptotic QFI Eq. (3); in this case [31]:

Fopt(t) = t2 ‖h− col(C)‖21 . (11)

Note that since signal and noise are both along σz on
each qubit, the usual repetition code [38] is not suitable
for sensing as it also corrects the signal Hamiltonian H .
Remarkably, while the domain of the SDP in Eqs. (6)–
(7) has dimension O(2N ), that of Eq. (10) only has di-
mension O(N): our ansatz in Eq. (9) renders the QEC
code optimization efficient. An approximate solution to

Eq. (10) is b̃
⋄
= γ projker(C)h, where γ is an adjustable

parameter in the range [−γmax, γmax] \ {0}, γmax =

‖projker(C)h‖−1
∞ . The code using θ = 1

2 arccos b̃
⋄
always

satisfies the QEC sensing conditions exactly [Eqs. (4)–
(5)], although it needs not saturate the optimal QFI in
Eq. (11). In the important case of a single vanishing

noise mode [i.e., nullity(C) = 1], however, b̃
⋄
achieves

the optimal QFI at γmax.

Lossy bosonic channel. Boson loss is often the domi-
nant decoherence mechanism in a bosonic mode [39], de-
scribed by the master equation

dρ

dt
= −i

[

s
∑

i=1

ζi(a
†a)i, ρ

]

+ κ
(

aρa† − 1

2
{a†a, ρ}

)

, (12)

where a is the annihilation operator and κ the boson loss
rate. We only consider Hamiltonians that are a function
of the boson number a†a, applying a cutoff at the s-th
power, where s > 1 is a positive integer. We also truncate
the boson number at M , to keep the system dimension
finite. According to the HNLS condition, while ζ1 cannot
be sensed at the Heisenberg limit, ω := ζs asymptotically
can, with the optimal code for s = 2 provided in Ref. [15].
To sense ω, it is important to filter out all lower-order

signals
∑s−1

i=1 ζi(a
†a)i using the QEC code. Therefore, we

should use the following modified Lindblad span [31]:

S = {I, a, a†, (a†a)i, 1 ≤ i ≤ s− 1}. (13)

Note that the boson loss noise is not commuting because
[a, (a†a)i] 6= 0. Still, this type of off-diagonal noise can be
tackled by simply ensuring the distance of the supports
(non-vanishing terms) of |0l〉 and |1l〉 is at least 3.
To obtain the optimal code, we could solve the SDP in

Eqs. (6)–(7). However, when M is sufficiently large, we
obtain a near-optimal solution analytically by observing
that for large M , minimizing ‖(a†a)s − ∑s−1

i=0 χi(a
†a)i‖

over all {χi}s−1
i=0 is equivalent to approximating a s-th

degree polynomial using an (s − 1)-degree polynomial.
The optimal polynomial is the Chebyshev polynomial [40]
and the near-optimal code, that we call the s-th order
Chebyshev code, is supported by its max/min points:

|0(1)l〉 =
[0,s]
∑

k even(odd)

c̃k
∣

∣

⌊

M sin2 (kπ/2s)
⌋〉

, (14)

where ⌊x⌋ denotes the largest integer ≤ x, and |c̃k|2 can
be obtained from solving a linear system of equations of
size O(s2). |c̃k|2 is approximately equal to 2

s− 1
sδks− 1

sδk0
for sufficiently large M . (Detailed calculations are in
Ref. [31].)
In quantum sensing, the s-th order Chebyshev code

corrects the Lindblad span (Eq. (13)) and provides a near
optimal asymptotic QFI for ω

F (t) ≈ Fopt(t) ≈ 16t2
(

M

4

)2s

, (15)

for sufficiently large M . Note that the (s − 1, Ms − 1)
binomial code [41] also corrects Eq. (13), but it gives a
QFI that is exponentially smaller than the optimal value
by O

(

s(2/e)2s
)

for sufficiently large M .
Enhancing sensitivity beyond HNLS. Previous works

have focused on regimes where the HNLS condition is ex-
actly satisfied. However, QEC can still enhance quantum
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sensing well beyond this ideal scenario, even if the sen-
sor’s encoded dynamics is not unitary (even asymptoti-
cally for ∆t→ 0). Indeed, decoherence at the logical level
can often be made weaker than at the physical level—
while still maintaining signal—giving a net enhancement
in sensitivity.
To show how, we generalize the dephasing qubits exam-

ple to this more realistic setting. When HNLS is satisfied,
the code in Eq. (9) corrects noise modes with non-zero
amplitude λj > 0, but leaves a mode with λu = 0 uncor-
rected. In experiments, the noise correlation matrix C is
generically full-rank, meaning that the HNLS condition is
not satisfied. Yet, non-trivial noise correlations will gen-
erally cause C to have a non-uniform spectrum, yielding
some subdominant eigenvalues and corresponding Lj’s.
It is thus possible to design a code that still accumulates
signal at the cost of leaving uncorrected just one sub-
dominant noise mode (λu ≈ 0) through an appropriate
choice of θ in Eq. (9). To reach a closed-form expression

for the resulting sensitivity, we use b̃
⋄
as a starting point

rather than an SDP formulation, setting

θ =
1

2
arccos(γvu), (16)

defined element-wise, where |γ| ∈ (0, γmax] is again ad-
justable, now with γmax = ‖vu‖−1

∞ .
The natural figure of merit for a sensor with uncor-

rected noise is not the Fisher information: decoherence
eventually causes F (t) to decrease, rather than grow un-
bounded as in Eq. (3). Instead, it is sensitivity, defined
as the smallest resolvable signal per unit time [3]. For a
single qubit with an energy gap Aω and dephasing time
T2/B, the best achievable sensitivity is [16]

η = min
t>0

1
√

F (t)/t
=

√
B

A

√

2e

T2
. (17)

Taking hj = 1 in Eq. (8), each physical qubit (A = B =

1) gives η1 =
√

2e/T2. N such qubits operated in parallel

give ηpar = η1/
√
N , while for entangled states one could

reach A = N , often at the cost of an increased B. For
example, a Greenberger-Horne-Zeilinger (GHZ) sensing
scheme with the same N qubits gives

ηGHZ =
‖D1/2

C V ⊤h‖2
N

√

2e

T2
, (18)

where V = (v1, . . . ,vN ) and DC = diag(λ1, . . . , λN ) [42].

Note that for uncorrelated noise we have ‖D1/2
C V ⊤h‖2 =√

N , thus negating any gains from entanglement.
To find the sensitivity offered by the QEC code de-

scribed above, we compute the sensor’s effective Liou-
villian, Leff = R ◦ L ◦ P , under frequent recoveries R,
where P(ρ) = PρP [16]. The usual QEC recovery (i.e.,
the transpose channel) results in population leakage out
of the codespace due to the uncorrected error Lu, even
when ∆t → 0, which complicates the analysis [28, 43].

To prevent such leakage at leading order in ∆t/T2, we
modify the usual recovery so that the state is returned
to the codespace after an error Lu, though perhaps with
a logical error. This modification results in a Marko-
vian, trace-preserving effective dynamics over the two-
dimensional codespace, given by Leff. Specifically, the
sensor’s effective dynamics becomes that of a dephas-
ing qubit with A = γ|vu · h| and B = γ2λu, giving

η
(u)
QEC = η1

√
λu/|vu · h|. The optimal choice of u is the

one that minimizes this quantity, giving:

ηQEC =
1

‖D−1/2
C V ⊤h‖∞

√

2e

T2
, (19)

valid for arbitrary noise correlation profile C [44]. The
straightforward but lengthy calculation is given in [31].
Eq. (19) identifies the C’s for which this QEC scheme

provides enhanced sensitivity over parallel and GHZ sens-
ing. Notice that while HNLS is satisfied only in a
measure-zero set of C’s, QEC can enhance sensitivity
over a much larger set, regardless of whether it can ap-
proach the Heisenberg limit in t.
Eq. (19) admits a broad range of ηQEC vs. N scalings

due to the critical dependence of ηQEC on C = C(N).
The same is true of the Fisher information in the HNLS
limit as we show in [31].
Discussion. We have shown that noiseless ancillas,

while frequently invoked, are not required for a large fam-
ily of error-corrected quantum sensing scenarios where
the Hamiltonian and the noise operators all commute.
Our proof is constructive, and gives a numerical method
for designing QEC codes for sensing through semidefinite
programming, analogous to the techniques from Refs.
[45, 46] for quantum computing. Commuting noise, how-
ever, is not necessary for ancilla-free codes [10–12] and it
is an interesting open problem to refine Theorem 1 into
a necessary and sufficient condition.
We also introduced near-optimal, closed-form QEC

codes and associated recoveries for two common sensing
scenarios. For dephasing qubits, we found an expres-
sion for the sensitivity enhancement offered by our QEC
scheme under arbitrary Markovian noise, even when the
Heisenberg limit in t could not be reached. Our results
raise the questions of whether there exists a simple geo-
metric condition defining the set of C’s for which QEC
can enhance sensitivity, and whether or not Eq. (19) is a
fundamental bound for QEC schemes. More broadly, our
results show that ancilla-free, task-oriented QEC code de-
sign through convex optimization is a promising tool to
enhance near-term quantum devices.
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