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Designer optical control of interactions in ultracold atomic gases has wide applications, from cre-
ating new quantum phases to modeling the physics of black holes. We demonstrate wide tunability
and spatial control of interactions in a two-component cloud of 6Li fermions, using electromag-
netically induced transparency (EIT). With two control fields detuned ≃ 1.5 THz from atomic
resonance, MHz changes in the frequency of one optical beam tune the measured scattering length
over the full range achieved by magnetic control, with negligible (10−6) effect on the net optical
confining potential. A 1D “sandwich” of resonantly and weakly interacting regions is imprinted on
the trapped cloud and broadly manipulated with sub-MHz frequency changes. All of the data are
in excellent agreement with our continuum-dressed state theoretical model of optical control, which
includes both the spatial and momentum dependence of the scattering amplitude.

Tunability of interactions in ultracold atomic gases has
been achieved by exploiting magnetically controlled col-
lisional (Feshbach) resonances [1], where the total energy
of two colliding atoms in an energetically open channel
is tuned into resonance with a bound dimer state in a
closed channel. Optical field control offers a much richer
palette, by creating designer interactions with high reso-
lution in position, energy, momentum, and time. These
techniques enable new paradigms. For example, energy
resolution will provide better models of neutron matter
by controlling the effective range [2, 3], while momen-
tum resolution will create pairs with a nonzero center
of mass momentum in two-component Fermi gases [4, 5].
The increased temporal resolution enables studies of non-
equilibrium thermodynamics of strongly interacting gases
on time scales faster than the Fermi time [6]. Spatial ma-
nipulation of interactions can be utilized to study con-
trollable soliton emission [7], exotic quantum phases [8],
long-living Bloch oscillations of matter waves [9], the
physics of Hawking radiation from black holes [10], and
scale-invariant dimer pairing [11]. Optical control meth-
ods are therefore of great interest [12–19], but generally
suffer from atom loss and heating due to spontaneous
scattering, which severely limits their applicability.

In a major breakthrough for suppressing spontaneous
scattering, Bauer et al., [16] used a bound-to-bound tran-
sition in the closed channel, which is far away from the
atomic resonance. To further suppress atom loss, large
detunings from the bound-bound transition were em-
ployed, but this limited the tunability of the scattering
length a to ∆a ≃ 2 abg, where abg is the background
scattering length. In addition, the interaction strength
was tuned by changing the intensity of the laser light,
which changes the net external potential experienced by
the atoms. Cetina et al., [17] avoided this problem by
changing the spot size synchronously with the intensity
to maintain a constant potential. Clark and cowork-
ers [18] employed a “magic” wavelength approach for
133Cs atoms, by tuning the control beam between the D1

and D2 lines, to suppress the atomic polarizability and
hence the change in the external potential, but achieved a
tunability of only ≃ 0.2 abg. This technique is applicable
for well-separated optical transitions, but is not applica-
ble to species such as 6Li, where the D1 and D2 lines are
closely spaced.

Recently, we demonstrated new two-field optical tech-
niques [2, 3], employing EIT [20] in the closed channel
to control magnetic Feshbach resonances [21, 22]. Our
technique [21] tunes the scattering length near a two-
photon resonance, where the loss is at a minimum and
tunability of scattering length is at a maximum, in con-
trast to single-field optical methods [16, 18], where the
maximum tunability in the scattering length is associ-
ated with maximum loss. Further, our method enables
frequency tuning, where changes in one optical frequency
by a few MHz (small compared to the detuning ≈ 1.5
THz from the atomic resonance), widely tunes the scat-
tering length, with a negligible change in the net external
potential experienced by the atoms, making the method
broadly applicable.

In this Letter, we report optical frequency tuning of the
s-wave scattering length a near the narrow Feshbach res-
onance in 6Li, by up to ∆a ≃ 12 abg, where abg = 62 a0
is the background scattering length, with a0 the bohr
radius. We show that our optical method achieves the
same tuning range as for magnetic control, which is lim-
ited only by the width of the energy distribution, due to
the momentum-dependence of the narrow Feshbach res-
onance [23]. Exploiting this wide tunability, we demon-
strate spatial control of interactions by creating an inter-
action “sandwich”, where the central region of the atomic
cloud is resonantly interacting with ∆a > 10 abg and
is surrounded by two weakly interacting regions, where
∆a ≃ 1 abg.

Our basic method is shown in Fig 1a. Optical fields ν1
(Rabi frequency Ω1 and detuning ∆1) and ν2 (Rabi fre-
quency Ω2 and detuning ∆2), couple the ground molecu-
lar states of the singlet potential, |g1〉 and |g2〉, to the
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FIG. 1. Basic level scheme to control interactions using electromagnetically induced transparency (EIT). (a) Optical fields
ν1 (Rabi frequency Ω1 and detuning ∆1) and ν2 (Rabi frequency Ω2 and detuning ∆2) couple the ground molecular states
|g1〉 and |g2〉 to the excited molecular state |e〉 of the singlet potential, allowing precise tuning of the state |g1〉 from below
(δ < 0) to above (δ > 0) its unshifted position, where δ = ∆2 − ∆1 is the two-photon detuning. Inset shows the optical
field arrangement for creating an interaction “sandwich.” The central region of the atomic cloud illuminated by both ν1 and ν2
beams are resonantly interacting. The outer regions of the atomic cloud illuminated only by the ν1 beam are weakly interacting.
(b) Measuring mean-field interactions using RF spectroscopy. Fraction of atoms remaining in state |3〉 by applying an RF π
pulse (1.2 ms) to transfer atoms from hyperfine state |3〉 to |2〉, obtained with (blue) and without (magenta) atoms present in
state |1〉. Solid curves: Predictions (see text).

excited state |e〉, tuning the energy of |g1〉 with sup-
pressed optical scattering [21, 22]. The lowest two hyper-
fine states in 6Li, |1〉 and |2〉, have an energy-dependent
narrow Feshbach resonance (width ∆B = 0.1 G) at
Bres = 543.27 G [23], where the atoms are predomi-
nantly in the spin triplet state |T, k〉, which tunes down-
ward with magnetic field B as −2µB B, where µB is the
Bohr magneton. The triplet continuum |T, k〉 is coupled
to state |g1〉 with a second order hyperfine coupling con-
stant VHF , which causes the narrow Feshbach resonance.
For our experiments [24], Ω1 = 0.5 γe and Ω2 = 2.2 γe,
where γe = 2π × 11.8 MHz is the decay rate of the ex-
cited molecular state. The detuning ∆1 = +2π × 19
MHz. We define the two-photon detuning δ = ∆2 −∆1,
which is varied by changing the frequency of the ν2 laser
and holding the frequency of ν1 laser constant. δ ≡ 0
is the two-photon resonance corresponding to minimum
loss. For δ ≡ 0, the state |g1〉 also returns to its original
unshifted position. The state |g1〉 is below (above) its
unshifted position for δ < 0 (δ > 0).

We first use radio frequency spectroscopy to demon-
strate optical tuning of interactions as a function of the
two-photon detuning δ. To avoid three body inelastic
loss near the narrow |1〉 − |2〉 resonance [23], we initially
prepare a |1〉 − |3〉 mixture [24], Fig. 1b, before ramp-
ing the magnetic field to B = Bres + 0.010 G. Then
we apply the ν2 beam and wait 50 ms for the atoms to
reach equilibrium in the combined potential created by
the ν2 beam and the CO2 laser trap, with a typical Fermi
temperature TF = 1.4µK. The ν1 beam is then applied
concurrently with an RF π pulse (1.2 ms) that transfers
atoms in state |3〉 to the initially empty state |2〉. The

number of atoms remaining in state |3〉 is measured by
absorption imaging as a function of the radio-frequency.
Fig. 1b shows shifted (blue) and unshifted (magenta) RF
spectra, obtained with and without atoms in state |1〉,
respectively. The unshifted spectrum calibrates the mag-
netic field. The shifted spectrum is broadened due to the
inhomogeneity in the atom density profile and in the in-
tensity of the optical control beams. Fig. 2a (red dots)
shows the measured frequency shifts of the RF spectra
as a function of two-photon detuning δ.
The observed frequency shifts are density dependent

and arise from mean-field interactions [23, 25, 26] of
atoms in states |3〉 and |2〉 with atoms in state |1〉, where
n1(r) is the density. To understand the data, we calcu-
late the local transition probability [24], which depends
on the local mean field shift ∆νMF . For two-body scat-
tering, neglecting atom-atom correlations [27, 28],

∆νMF (Hz) =
2 h̄

m
n1(r)

[

a13 −
〈

aopt
12

(ν2,Ω2(z))
〉 ]

, (1)

where m is the atom mass and a13 ≈ −267 a0 is the
|1〉 − |3〉 s-wave scattering length near 543 G, far from
the |1〉 − |3〉 broad Feshbach resonance (width ∆B ≈
122 G) at 690 G [23, 29]. 〈aopt

12
〉 is the real part of

the momentum-averaged, optically controlled, two-body
scattering amplitude calculated from the continuum-
dressed state model [21, 24] for the |1〉 − |2〉 narrow Fes-
hbach resonance. Note that 〈aopt

12
〉 depends on the opti-

cal frequencies ν1, ν2, the magnetic field B, and on the
Rabi frequencies Ω1, Ω2, which are generally position de-
pendent (along z-in our experiments), enabling spatial
control as demonstrated below.
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FIG. 2. Optical control of the two-body scattering length
near the energy dependent narrow Feshbach resonance of 6Li
at 543.27 G (a) Measured frequency shifts in the rf spectra
(red dots) and prediction (blue curve) as a function of two-
photon detuning δ, by changing ν2 and holding ν1 constant.
δ ≡ 0 denotes the two-photon resonance. (b) Momentum-
averaged scattering length ā12 (red dots) determined from
the measured frequency shifts versus δ and prediction (green
solid curve). Inset: Magnetically tuned a12. Note that optical
tuning achieves the same range as magnetic tuning. abg =
62 a0.

We predict the spectra from the local probability for a
transition from |3〉 to |2〉, integrated with the phase space
distribution of atoms in the initial state |3〉 [24]. The
predictions employ the measured Rabi frequencies, atom
density, and RF pulse duration, with the temperature,
which controls the momentum distribution, as the only
adjustable parameter. For T = 1.0µK, the predicted fre-
quency shifts, shown as the solid blue curve for in Fig. 2a,
are in excellent agreement with the measurements. The
error bars on the data points, estimated from the fluc-
tuations in the magnetic field and optical frequencies,
are negligible compared to the statistical error, which is
smaller than the point size.

The predicted two-body scattering length at z = 0,
Fig. 2b green curve, is evaluated from

〈

aopt
12

(ν2,Ω2(z))
〉

in Eq. 1, which was used to generate the predicted mean-

field frequency shifts in Fig. 2a. For comparison, we use
a simple approximation to extract the scattering length
ā12 at z = 0, from each of the measured frequency shifts
in Fig. 2a. The ā12, displayed as red dots in Fig. 2b, are
obtained by assuming ∆νmeas =

2 h̄
m

n̄1 (a13− ā12), where
n̄1 is a fitting parameter. We determine n̄1 by comparing
the measured mean-field shifts with the predictions at
large detunings, where the tunability of the scattering
length is small. We find n̄1 = 1.5 × 1011 cm−3 [24]. As
expected, n̄1 is smaller than the typical mean density in
the experiments, n̄ = 2.0×1011 cm−3, since the predicted
scattering length is largest at z = 0.
Fig. 2b shows that changing the frequency δ by just

a few MHz tunes the two-body scattering length be-
tween +7 abg (BEC side of resonance) and −5 abg (BCS
side), the same range as obtained by magnetic tuning
without optical fields, Fig. 2b (Inset). As noted previ-
ously [23], for a narrow resonance, the effective range
is large, i.e., the maximum scattering length is limited
by small width ≃ 0.1G and the energy spread, i.e.,
|amax/abg| ≃ 2µB∆B/∆E ≃ 10 for the conditions of our
experiment.
We demonstrate spatial control of two-body interac-

tions by using the scheme of Fig. 1(Inset), where the spot
sizes of the control fields are made large enough [24] to en-
able in-situ images of the spatially controlled interaction
profiles, as shown in Fig. 3. The two-photon detuning δ
is employed as a control parameter to change the inter-
action spatial profiles. After illuminating the atoms with
the ν1 and ν2 beams, we apply an RF π pulse (1.2 ms)
that transfers atoms from the initial state |3〉 to state |2〉,
in the presence of atoms in state |1〉. The frequency of
the RF pulse is chosen to be resonant for δ = ±10 MHz,
where the entire cloud is weakly interacting.
Measured 2D absorption images of the atoms that ar-

rive in state |2〉 are shown in Fig. 3a as a function of δ,
where ν2 is varied and ν1 is held constant. The corre-
sponding 1D axial profiles are shown in Fig. 3c (blue).
The transferred fraction of atoms in state |2〉 depends on
the spatially varying, optically controlled |1〉 − |2〉 scat-
tering amplitude. Fig. 3d shows the two-body scattering
length aopt

12
(z) used to generate the predicted 1D spatial

profiles (red curves in Fig. 3c) and the predicted 2D ab-
sorption images in Fig. 3b [24].
Excellent quantitative agreement is obtained between

the measured (blue) and the calculated (red) 1D axial
profiles, Fig. 3c. For the predictions, we again use the
measured density and optical field parameters, and ad-
just the temperature, which determines the momentum
distribution to be T = 1.0µK, the same as for Fig. 2.
The asymmetry in the 1D profiles for δ = −0.64 MHz
and δ = −0.54 MHz is due to the off-center position of
the ν2 beam, which is taken into account in generating
the calculated 1D profiles.
At δ = −0.64 MHz, we create an interaction “sand-

wich,” where the central region of the atomic cloud is res-
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FIG. 3. Designer interaction patterns in an ultracold gas of 6Li atoms versus two-photon detuning δ, with δ ≡ 0 at the
two-photon resonance. (a) Measured false color 2D absorption images of atoms arriving into |2〉 after transfer from state |3〉
by a 1.2 ms RF π pulse, in the presence of atoms in state |1〉. (b) Predicted 2D images using measured parameters [24]; (c)
Normalized 1D axial profiles n1D/n0, where n0 is the peak density with no atoms in state |1〉. Measured (blue) and calculated
(red); (d) Momentum averaged two-body scattering length aopt

12
used to generate the predicted 2D and 1D spatial profiles.

onantly interacting with a12 ≈ 12 abg and is enclosed by
two weakly interacting regions with a12 ≈ 1 abg (Fig. 3d).
This is evident from the measured 2D profile in (Fig. 3a),
where the fraction of atoms transferred to state |2〉 in the
central region of the cloud is heavily suppressed, due to
the large frequency shift arising from resonant interac-
tions. The measured suppression is not due to atom loss,
as we observe that atoms remain in the initial state |3〉,
when they are not transferred to state |2〉.

We see that a small frequency change from δ = −0.64
MHz to δ = −0.43 MHz, inverts the interaction “sand-
wich” by making the central region more weakly inter-
acting than the wings of the atomic cloud, resulting in
increased transfer near the center, Fig. 3a. Although
the sign of the interaction is not directly evident in the
2D profiles, the predicted scattering amplitude, Fig. 3d,
shows that we can invert the sign of the 1-2 scatter-
ing length between the central and the outer regions
of the cloud. For δ = −0.11 MHz, the interactions in
the central region become attractive with a12 ≈ −5 abg

and the interactions in the wings become repulsive with
a12 ≈ 10 abg. As δ is tuned from below the two-photon
resonance, δ = −3.26 MHz, to above the two-photon
resonance, δ = +0.75 MHz, the interactions in the cen-
tral region of the cloud changes sign from repulsive to
attractive [24]. We see that a δ tuning range of just 4
MHz imprints widely different interaction “designs” on
the atomic cloud.

Previous experiments demonstrating spatial control of
interactions either suffered from extremely short (10 µs)
lifetimes [15] or limited optical tunability, 0.15 abg [18].
Further, all-optical manipulation of spatial interaction
profiles has not been previously demonstrated. The two-
field EIT method demonstrated here provides a robust,
frequency tunable method for spatio-temporal control of
interactions with negligible change the net confining po-
tential. For the time scale (1.2 ms) and densities used
in our optical control experiments, the atom loss due
to spontaneous scattering is negligible [24], making this
method ideal for studies of local non-equilibrium dynam-
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ics on time scales fast compared to the Fermi time [6, 17],
τF ≃ h̄/EF ≃ 10µs for EF = 5µK and for studies of
resonantly interacting Bose gases, which exhibit hydro-
dynamic flow and achieve local equilibrium on ms time
scales [30].

Our method has broad applications, creating new fields
of study in ultracold gases. For example, one can imprint
an interaction superlattice, where interactions between
atoms at different lattice sites are independently con-
trolled and manipulated with minimum scattering loss,
permitting studies of “collisionally inhomogenous” sys-
tems [31]. Further, a momentum selective extension of
our method has been suggested as a means for realizing
synthetic Fulde-Ferrell superfluids, where resonant inter-
actions and atom pairing occur at finite momentum, with
suppressed optical loss [4, 5].
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