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Out-of-time-ordered correlators (OTOCs) have received considerable recent attention as qualita-
tive witnesses of information scrambling in many-body quantum systems. Theoretical discussions
of OTOCs typically focus on closed systems, raising the question of their suitability as scrambling
witnesses in realistic open systems. We demonstrate empirically that the nonclassical negativity of
the quasiprobability distribution (QPD) behind the OTOC is a more sensitive witness for scrambling
than the OTOC itself. Nonclassical features of the QPD evolve with time scales that are robust
with respect to decoherence and are immune to false positives caused by decoherence. To reach
this conclusion, we numerically simulate spin-chain dynamics and three measurement protocols (the
interferometric, quantum-clock, and weak-measurement schemes) for measuring OTOCs. We target
experiments based on quantum-computing hardware such as superconducting qubits and trapped
ions.

Introduction—Quantum many-body dynamics is
scrambling when initially localized quantum information
spreads via entanglement through many degrees of
freedom. Out-of-time-ordered correlators (OTOCs) have
been suggested as a way to characterize scrambling
across condensed-matter and high-energy contexts
[1–28]. Hence, investigating how to measure OTOCs
experimentally is crucial. Different OTOC-measurement
protocols have been proposed [29–32], and some ex-
perimental success has been reported [33–36]. Yet the
protocols’ robustness in realistic, decoherent experi-
mental settings has just started to be explored and is
emerging as an active area of research [36–41].

We study decoherence’s effects on OTOCs used to wit-
ness information scrambling. We find that the OTOCs’
underlying quasiprobability distributions (QPDs) can
more robustly identify the key time scales that distin-
guish scrambling. These QPDs are extended Kirkwood-
Dirac QPDs [31, 42–47]. They reduce to classical
joint probability distributions over the eigenvalues of
the OTOC operators when the operators commute.
Otherwise, the QPDs become nonclassical: individual
quasiprobabilities can become negative, exceed one, or
become nonreal. This nonclassicality robustly distin-
guishes scrambling from decoherence.

We study three OTOC-measurement protocols: the (1)
interferometric [30], (2) sequential-weak-measurement
[31, 47], and (3) quantum-clock [32] protocols. Scram-
bling causes the OTOC to decay over a short time in-
terval, then remain small. Information leakage can re-
produce this behavior [38], since a decohered system en-
tangles with the environment. Quantum information
spreads across many degrees of freedom, but most are
outside the system. We therefore propose a modifica-
tion to these protocols that uses the (coarse-grained [31])
QPD behind the OTOC to distinguish between scram-
bling and nonscrambling dynamics despite decoherence.

Our paper is organized as follows. We first define the
OTOC and its QPD. As a concrete example suitable for
simulation with qubit architectures, we consider a spin
chain switchable between scrambling and integrable dy-
namics. Next, we introduce dephasing, modeled on cur-
rent superconducting-qubit technology, and we analyze
its effect on the OTOC and its QPD. We numerically sim-
ulate the spin chain for each OTOC-measurement proto-
col, and we compare the OTOC’s degradation by deco-
herence. The simulations show that the QPD’s negativity
distinguishes scrambling dynamics despite ambiguity in
the OTOC.

OTOCs and their quasiprobabilities—Quantum infor-
mation scrambling is related to the quantum butterfly
effect: localized operators’ supports grow under time
evolution by an appropriate nonintegrable Hamiltonian.
The operators come to have large commutators with
most other operators—even operators localized far from
the initially considered local operator. As an example,
consider a Pauli operator acting on one end of a spin
chain. Another Pauli operator, acting on the opposite
end, probes the propagation of quantum information. If
the Hamiltonian is scrambling, an increasing number of
degrees of freedom must be measured to recover the ini-
tially local information. Below, we make this intuition
and its relation to the OTOC more precise.

Let H denote a quantum many-body system Hamilto-
nian; W and V, local far-apart operators; and ρ, a density
matrix. The OTOC is defined as

F (t) := Tr
(
W †(t)V †W (t)V ρ

)
. (1)

Here, W (t) = U(t)†WU(t) is evolved in the Heisen-
berg picture with the unitary evolution operator U(t) :=
exp(−iHt). Initially, W and V commute: [W (0), V ] = 0.
If W and V are unitary, then the OTOC is related to the
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Hermitian square of their commutator:

C(t) :=

〈
[W (t), V ]

†

(2i∗)

[W (t), V ]

2i

〉
=

1− Re F (t)

2
. (2)

Otherwise, the commutator’s square includes noncon-
stant time-ordered correlators. A Hamiltonian that
scrambles information tends to grow the commutator’s
magnitude. This growth leads to a persistent smallness
of Re F (t). In contrast, for a nonscrambling Hamilto-
nian, W (t) and V approximately commute after a short
recurrence time, as information quickly recollects from
other parts of the system. Re F (t) revives to close to
one.
W and V decompose as W =

∑
w wΠW

w and V =∑
v vΠV

v , where ΠW
w and ΠV

v are the projectors onto the
eigenspaces corresponding to the eigenvalues w and v.
The eigenspaces are degenerate, since W and V are local
operators and the system is large. F (t) can be expressed
as an average of eigenvalues [48],

F (t) =
∑

v1,w2,v2,w3

v1w2v
∗
2w
∗
3 p̃t (v1, w2, v2, w3) , (3)

with respect to an extended Kirkwood-Dirac [42, 43]
(coarse-grained) quasiprobability distribution (QPD)

p̃t (v1, w2, v2, w3) := Tr
(

ΠW (t)
w3

ΠV
v2ΠW (t)

w2
ΠV
v1ρ
)
. (4)

p̃t was denoted by Ãρ in [31].
Equation (3) implies that the QPD p̃t exhibits the

OTOC’s time scales. Therefore, qualitative features of
OTOCs that reflect scrambling should have counterparts
in p̃t.

The QPD p̃t is complex and, like a clas-
sical probability distribution, normalized:∑
v1,w2,v2,w3

p̃t (v1, w2, v2, w3) = 1. Regions where
p̃t becomes negative, exceeds one, or has a nonzero
imaginary part are nonclassical. We quantify these
regions’ magnitudes with the total nonclassicality of p̃t:

Ñ(t) :=
∑

v1,w2,v2,w3

|p̃t (v1, w2, v2, w3)| − 1. (5)

As we will see, even in the presence of decoherence, the
total nonclassicality’s evolution distinguishes integrable
from nonintegrable Hamiltonians. The distinction allows
the QPD to signal scrambling robustly.

Spin chain—We illustrate with a quantum Ising chain
of N qubits. For ease of comparison, we use the conven-
tions in [49–52]:

H = −J
N−1∑
i=1

σzi σ
z
i+1 − h

N∑
i=1

σzi − g
N∑
i=1

σxi . (6)

We set ~ = 1, such that energies are measured in units
of J ; and times, in units of 1/J . We fix 2π/J = 1µs and
simulate two cases:

1. Integrable case: h/J = 0.0, g/J = 1.05

2. Nonintegrable case: h/J = 0.5, g/J = 1.05.

These values equal those in Ref. [31]. As in Ref. [31],
W = σz1 , and V = σzN [53].

To map this Hamiltonian onto a physical qubit sys-
tem, e.g., an array of transmons [54, 55], we interpret the
eigenstates of −σxi as a qubit’s energy eigenbasis. Each
qubit has an intrinsic energy splitting of 2g and couples
capacitively to its neighbors with energy J . Unless pre-
pared by a measurement, the qubit relaxes to a thermal
state. Therefore, as an initial state, we consider a Gibbs
state at a finite temperature T : ρT = Z−1 exp(−H/T ),
with T/J = 1, Z = Tr(exp(−H/T )), and kB = 1
[56]. Each qubit has a ground-state population of ≈ 0.8.
OTOCs are usually evaluated on thermal states due
to holographic interest in the thermofield double state
[3, 4, 6–10, 12, 13, 17].

Decoherence—We model decoherence with a
Lindblad master equation dρ/dt = −i[H, ρ] +∑N+na

i=1 γi

(
LiρL

†
i − 1/2

{
L†iLi, ρ

})
. Here, N de-

notes the number of spins and na, the number of
ancillas required for a given protocol. We choose
Li = σzi and γi = γ = 1/(2T ∗2 ). The operators Li
implement single-qubit dephasing at rates γi (dephasing
dominates the decoherence). However, this dephasing
also indirectly causes amplitude mixing due to the
nondiagonal terms in the Hamiltonian. The parameter
T ∗2 denotes the observed exponential decay constant for
the qubit coherence from chip-dependent environmental
fluctuations. We have chosen an optimistic T ∗2 = 130µs,
plausible for upcoming transmon hardware [57]. We
interpret the Lindblad equation as an average over the
stochastic phase-jumps that could occur during each
length-dt time step. At each time step, a density matrix
ρ updates according to

ρ 7→ dt
∑
i

γiLiU(t)ρU(t)†L†i + L0U(t)ρU(t)†L†0. (7)

The no-phase-jump operator is L0 =
√

11− dt∑i γiL
†
iLi.

This model offers simplicity and numerical stability [58].
For each OTOC-measurement protocol, we replace the

ideal time evolution with Eq. (7) and assume that time
reversal implements only U(t) ↔ U†(t). We distinguish
between the total time elapsed in the laboratory, tL, and
the time t at which the OTOC is evaluated. Each simu-
lated reversal of t accumulates positive lab time tL; thus,
every protocol lasts for a unique tL. To simulate decoher-
ence’s effects on the QPD, we use the weak-measurement
protocol [31, 47]. The other protocols can be adapted for
QPD measurements [31].
Simulation results and discussion—Figure 1 shows the

real part of the OTOC, measured in the presence of de-
coherence: FI(t), FW (t), and FC(t) denote the OTOC
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(b) Nonintegrable case

Figure 1. Evolution of measured OTOC, F (t) =
〈
W †(t)V †W (t)V

〉
, with and without decoherence. Values measured with

three different protocols are compared against the ideal value: interferometric FI(t), weak FW (t), and quantum clock FC(t).
To simulate near-term experiments, the system consists of N = 5 spins in an Ising chain with (a) a transverse field and
(b) a transverse and a longitudinal field, with parameters detailed in the text. The system starts in a Gibbs state ρT =
Z−1 exp(−H/T ) with T/J = 1 and Z = Tr(exp(−H/T )). The system undergoes environmental dephasing of each qubit
with a decay constant of T ∗2 = 130µs. The local operators W = σz

1 and V = σz
N . These plots highlight the difficulties in

unambiguously distinguishing between (a) nonscrambling and (b) scrambling Hamiltonians in an experimental setting with
decoherence.

measured according to the interferometric [30], weak-
measurement [31, 47], and quantum-clock [32] protocols.
These curves are compared to the ideal OTOC F (t) mea-
sured in the absence of noise. These protocols differ in the
amounts of lab time required to measure F (t): the proto-
cols need tL’s that are at least 2t, 3t, and 4t, respectively.
As expected, OTOCs measured with long-tL protocols
decay the most, since they suffer from decoherence the
longest. The quantum-clock protocol’s FC(t) is affected
the most. Nonetheless, this protocol’s essence—the im-
plementation of time reversals via an ancilla qubit—could
be combined with a shorter-tL protocol (e.g., the inter-
ferometric protocol), to mitigate decoherence [59].

Figures 1a and 1b show that decoherence hinders us
from easily distinguishing between integrable and non-
integrable Hamiltonians. The integrable-Hamiltonian
OTOC with decoherence decays due to information leak-
ing, and the nonintegrable-Hamiltonian OTOC revives.
If we used these two OTOCs’ qualitative behaviors, we
would misclassify the Hamiltonians and incur a false pos-
itive, inferring scrambling where there is none.

Distinguishing scrambling from integrable Hamiltoni-
ans via the QPD is straightforward, despite decoherence
(Fig. 2). Decoherence damps the distribution’s oscilla-
tions, and the different curves drift towards a common
value (in our example, between 0 and 0.1). Unlike in the
integrable case, the nonintegrable case’s quasiprobabil-
ity shows a persistent bifurcation that we call a pitch-
fork: around t ≈ 15µs quasiprobabilities that used to
lie atop each at y = 0 split. This pitchfork arises be-
cause scrambling breaks a symmetry as it eliminates the
QPD’s invariance under certain permutations and nega-

tions of the QPD arguments in Eq. (4) [31]. The symme-
try breaking eliminates the QPD’s constancy under cer-
tain interchanges, and certain negations, of measurement
outcomes in a weak-measurement trial. We should expect
this asymmetry to surface in the total nonclassicality Ñt
of Eq. (5). Since information scrambling is related to
many-body entanglement, which is nonclassical, we ex-
pect the QPD’s nonclassicality to be a robust indicator
of scrambling. Indeed, damping shrinks the negative re-
gions in Fig. 2. The negative regions also show structure
that mirrors qualitative behavior of the OTOC: the decay
of Re F (t) matches the flourishing of the negativity; the
revivals of Re F (t) mirror the negativity’s disappearance.
Yet the QPD provides information absent from F (t).

We plot Ñ(t) in Fig. 3. The nonclassicality’s persis-
tence reflects sustained noncommutativity of W (t) and
V . Denote by t̃∗ the point at which Ñ(t) first deviates
from zero [60]; by tm, the point at which the first maxi-
mum occurs; and by tz, the time at which the first sub-
sequent zero happens. For the scrambling dynamics with
decoherence in Fig. 3, tz − tm is more than an order of
magnitude longer than tm−t̃∗. For the nonscrambling dy-
namics, the two time scales are comparable. In this case,
and without dissipation, tz−tm is longer than the simula-
tion time. We thus conjecture that, if tm− t̃∗ � tz − tm,
the dynamics is scrambling. As quantum information
spreads throughout the system in a time tm − t̃∗ ∝ N ,
if H is integrable, some information recollects in a time
tz − tm ∝ N . Hence, the total nonclassicality’s first peak
should be approximately symmetrical. If the system dy-
namics is scrambling, such a recollection would occur af-
ter a much longer time [17, 61, 62]. Ñ(t) should display
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Figure 2. Evolution of measured Re p̃t with and without decoherence, using the sequential-weak-measurement protocol.

The QPD, p̃t(v1, w2, v2, w3) = Tr(Π
W (t)
w3 ΠV

v2Π
W (t)
w2 ΠV

v1ρ), underlies the OTOC, F (t) =
∑
v1w2v

∗
2w
∗
3 p̃t(v1, w2, v2, w3), where

V =
∑
vΠv and W =

∑
wΠw. Of the sixteen QPD values, four examples are shown. The numeric labels in the legend have

the form abcd, where v1 = (−1)a, w2 = (−1)b, v2 = (−1)c, and w3 = (−1)d. The shaded regions show nonclassical behavior of
the QPD.

strong temporal asymmetry about its first maximum. We
see this lack of symmetry in the scrambling case’s Ñ(t)
in Fig. 3b.

We see also our conjecture’s role in the presence of de-
coherence: because of the significant differences in the
scrambling-case time scales, the asymmetry persists de-
spite the dissipation’s suppression of Ñ(t). F (t) offers
no such quantitative insight: Ñ(t) is useful because it
precisely identifies when nonclassical behavior arises and
disappears.

Conclusions and outlook—We propose that a more ro-
bust witness can be found in the nonclassical part of the
QPD p̃t behind the OTOC. The total nonclassicality Ñ
of p̃t helps distinguish integrable from scrambling Hamil-
tonians in the presence of decoherence. One can dis-
tinguish clearly between scrambling and nonscrambling
systems by comparing two time scales of Ñ . The dura-
tion between the birth of nonclassicality, at the time t̃∗,
and the nonclassicality’s first local maximum, at tm, is
related to the time needed by quantum information to

spread throughout the system. The spreading’s persis-
tence governs the duration between tm and the death of
nonclassicality, at tz. Nonscrambling dynamics exhibit
revivals of classicality on time scales tm − t̃∗ ≈ tz − tm,
while scrambling dynamics take much longer. This dis-
tinction is seen clearly in the total nonclassicality Ñ(t).
Unlike the OTOC, Ñ(t) is robust with respect to ex-
perimental imperfections like decoherence. Character-
izing this time’s scaling with system size, and checking
whether the scaling can be consistent with doubly expo-
nential expectations inspired by the Poincaré recurrence
time [17, 61, 62], is a subject for future research.

This study of decoherence highlights two opportuni-
ties for improving the robustness and convenience of the
QPD-measurement scheme in [31]. First, the weak mea-
surements’ coupling might be strengthened, along the
lines in [59]. Second, the scheme in [39] might be ap-
plied to renormalize away experimental errors.

Another opportunity for future study is whether
scrambling breaks symmetries in OTOC QPDs defined
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Figure 3. Total nonclassicality, Ñ(t) =
∑
|p̃t(v1, w2, v2, w3)| − 1, of the QPD, p̃t, showing sensitivity to decoherence for (a)

integrable and (b) scrambling systems. Comparing two time scales can reveal scrambling. The duration between the onset of
nonclassicality (t̃∗ ∼ 10µs) and the first maximum (tm ∼ 20µs) is roughly constant across both plots. The area between tm
and the next zero (tz) is shaded. For the integrable Hamiltonian, tz− tm ∼ tm− t̃∗ ∼ 10µs. For the nonintegrable Hamiltonian,
tz − tm remains an order of magnitude larger (tz − tm ∼ 100µs), even with decoherence. In the decoherence-free scrambling

case, Ñ(t) remains nonzero for at least four orders of magnitude of time longer than in the nonscrambling case.

in terms of W and V operators other than qubit Pauli
operators. An interesting choice to study next would be
the Sachdev-Ye-Kitaev (SYK) model [7, 63]. The SYK
model consists of Majorana fermions, whose experimen-
tal realizations are being pursued assiduously [64–70]. As
the SYK model scrambles maximally quickly, like black
holes, it has been hoped to shed light on quantum gravity.
The calculational tools available for SYK merit applica-
tion to the OTOC QPD, which may shed new light on
scrambling at the intersection of condensed matter and
high-energy physics.
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