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An isolated quantum gas with a localized loss features a non-monotonic behavior of the particle
loss rate as an incarnation of the quantum Zeno effect, as recently shown in experiments with cold
atomic gases. While this effect can be understood in terms of local, microscopic physics, we show that
novel many-body effects emerge when non-linear gapless quantum fluctuations become important.
To this end, we investigate the effect of a local dissipative impurity on an one-dimensional gas of
interacting fermions. We show that the escape probability for modes close to the Fermi energy
vanishes for an arbitrary strength of the dissipation. In addition, transport properties across the
impurity are qualitatively modified, similarly to the Kane-Fisher barrier problem. We substantiate
these findings using both a microscopic model of spinless fermions and a Luttinger liquid description.
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Introduction — The quantum Zeno effect (QZE) en-
tails that, perhaps surprisingly, a frequent measurement
of a microscopic quantum system suppresses transitions
between quantum states [1]. Recently, experiments with
ultracold atoms have revealed the QZE in many-body
systems. Here, different loss processes play the role of
a continuous measurement. For example, it has been
demonstrated that strong two-body losses give rise to an
effective two-body hardcore constraint, in this way turn-
ing losses into a tool to create strong correlations [2, 3].
For strong three-body losses, this effect has also been pre-
dicted theoretically to give rise to intriguing many-body
phenomena such as dimer superfluids and -solids [4], or
the fractional quantum Hall effect [5]. Another paradig-
matic setup was introduced in Refs. [6–8], where a local
loss process is induced by shining a focused electron beam
onto an atomic Bose-Einstein condensate. In particular,
the QZE manifests itself in a non-monotonic behavior of
the number of atoms lost from the condensate [6, 7]:
while it scales ∼ γ for a small dissipation strength γ, in
the Zeno regime the inverse scaling ∼ 1/γ is obtained –
the fast scale γ locally prevents the loss site to be entered
by nearby particles (cf. Fig. 1).

Although the QZE occurs here in many-body systems,
the effect is understood in terms of the local, microscopic
loss physics. In this work, we reveal a new incarnation
of the QZE with a genuine many-body origin, induced
by the interplay of strong quantum correlations, gapless
modes, and a localized loss. To this end, we study a one
dimensional wire of interacting fermions prepared in their
ground state: this constitutes the dissipative nonequilib-
rium counterpart of the paradigmatic Kane-Fisher prob-
lem [9, 10].

We show that fluctuations strongly renormalize the loss
barrier in the vicinity of the initial Fermi momentum kF ,
even if it is weak on the microscopic scale. For repulsive
interactions, the loss barrier is indefinitely enhanced at

kF (cf. Fig. 1). A fluctuation-induced QZE then mani-
fests itself by the loss barrier becoming fully opaque for
momenta ∼ kF . The opposite behavior with a renor-
malization group (RG) flow towards a transparent fixed
point is observed for attractive interactions. This leads
to a fluctuation-induced transparency.

Although the defining feature of the localized dissipa-
tion is the absence of a unitarity constraint for scatter-
ing off it, unitarity is thus emerging exactly at the Fermi
level. In fact, the fixed points are analogous to the ones
of Kane and Fisher [9]. However, the approach to the
fixed points, i.e. the physics in the vicinity of the Fermi
surface, strongly deviates from the Kane-Fisher scenario.
This is highlighted for attractive interactions: here, ob-
servables scale logarithmically with, e.g., temperature,
instead of the more common algebraic behavior.

The open-system nature of the setup provides an op-
portunity to probe the system via its output and thus
calls for suitable new observables without closed system
counterpart. We show that the momentum or energy
resolved escape probability turns out to be a realistic
measure to detect the fluctuation-induced QZE in future
experiments with ultracold atoms.

In the following, we substantiate these findings in two
complementary approaches: first, within a minimalis-
tic bosonization approach, providing a simple qualitative
picture. Second, via a microscopic calculation, taking
into account the dynamical nature of the open system
problem and elucidating the physical mechanism behind
our results.

Microscopic model — We consider a wire of spinless
fermions with mass m, interacting through a short-range
potential V (x), thus obeying the Hamiltonian

H = −
∫
x

ψ†(x)
∇2

2m
ψ(x) +

∫
x,y

V (x− y)n(x)n(y), (1)

with ψ†, ψ fermionic operators and n(x) = ψ†(x)ψ(x).
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FIG. 1. (Color online). Non-monotonic behavior of the es-
cape probability as a function of the dissipation strength. For
momenta close to kF , gapless fluctuations renormalize the es-
cape probability, reaching the Zeno (rightmost black dot) or
transparent (leftmost black dot) fixed points for repulsive or
attractive interactions, respectively.

We assume the wire to be infinitely long, so that
∫
x

=∫ +∞
−∞ dx, and to be prepared at T = 0. At time t = 0,

a localized loss is switched on at x = 0: this will gen-
erate particle currents, thus driving the system out of
equilibrium. We model the loss as a localized coupling
to an empty Markovian bath, thus describing the irre-
versible loss of atoms from the wire. Its dynamics will
be then conveniently described by the quantum master
equation [11]:

∂tρ = −i[H, ρ] +

∫
x

Γ(x)
[
LρL† − 1

2{L
†L, ρ}

]
, (2)

with L(x) = ψ(x), Γ(x) = γδ(x), γ being the dissipation
strength.

Luttinger liquid description — To obtain a first sim-
ple picture, we consider a long-wavelength description of
Hamiltonian (1) in terms of a Luttinger liquid [12]:

H =
v

2π

∫
x

[
g (∂xφ)2 + g−1 (∂xθ)

2
]

(3)

with v the speed of sound, g a parameter encoding the
effect of interactions, and θ and φ bosonic fields related
to density and phase fluctuations, respectively. Given
the nonequilibrium nature of the system, the usual equi-
librium techniques are inadequate to treat the problem,
and therefore it is convenient to resort to a Keldysh de-
scription [13, 14]. In order to include the local loss in the
bosonization language, we map the master equation (2)
onto a Keldysh action, and then bosonize the fields [15–
18]. Analogously to the case of a potential barrier [9, 10],
this yields a local backscattering term

Sback = −2iγ

∫
x,t

δ(x)
(
eiφq − cos θq

)
cos θc, (4)

where the labels c, q denote the classical and quantum
fields, respectively [13]. Notice that both θ and φ appear,
differently from the case of a potential barrier, where only
θ is involved: the field φ accounts for the currents flowing
towards the impurity. Following Refs. [9, 10], we study
the renormalization of the barrier in the limiting case of
weak dissipation γ → 0. The renormalization of γ at long

wavelengths is then determined within a momentum-shell
RG scheme [15], and produces the flow equation

dγ

d`
= (1− g)γ. (5)

This entails that the particle loss is expected to be sup-
pressed for slow modes. For attractive interactions, the
perturbation is irrelevant in the RG sense as γ → 0 and,
thus, the flow suppresses the dissipation strength. In con-
trast, for repulsive interactions (g < 1) the strength of
the localized loss is relevant in the RG sense and flows
to infinity, so that losses become suppressed by the QZE.
Eq. (5) is remarkably similar to the one obtained for the
renormalization of a potential barrier [9, 10], despite the
fact that the present system is subject to dissipation and
is out of equilibrium.

In order to certify the domain of validity of Eq. (5)
during the time evolution of the system, and its effect on
the observables, we will analyze directly the microscopic
model in Eq. (1). Moreover, while the previous analysis
is perturbative in γ, the following, complementary ap-
proach is exact in γ and perturbative in the microscopic
interaction.

Dynamical regimes — As the dynamics following the
quench of the dissipative impurity is remarkably com-
plex [19–22], we clarify its different stages by first solving
numerically the non-interacting model on a lattice with
periodic boundary conditions, described by the Hamilto-
nian H = −

∑L
j=1(ψ†j+1ψj + h.c.), with L the size of the

system and ψj , ψ
†
j the fermionic operators on site j. The

characterizing parameters are the system length L, the
initial density n0, and the dissipation strength γ. Fig. 2
(upper panel) shows the particle loss rate as a function
of time, from which one can identify three regimes: i)
for t < tI ∼ γ−1 an initial, fast depletion of particles
occurs close to the loss impurity. ii) for tI < t < tII, a
steady particle current is established, flowing from the
yet unperturbed regions of the wire at x > vt (with v
the speed of sound) towards the loss site. This regime,
which we will focus on, lasts up to a macroscopic time
tII ∼ L. iii) for t > tII, the entire system experiences the
effect of the dissipation and the particle loss rate slows
down, until the system is eventually depleted. In Fig. 2
(lower panel) we show the density profile during the sec-
ond regime tI < t < tII. At the impurity site the density
is strongly depleted, while the density in the surround-
ing region exhibits a less pronounced depletion, which
heals back to the initial value of the density on a dis-
tance ∼ vt. Crucially, the density around the impurity
displays Friedel oscillations, originating from the Fermi
step in the momentum distribution of the initial state.

Friedel oscillations — As the second dynamical regime
is extensively long, we will focus on it in the re-
maining part of this Letter. We substantiate the ex-
istence of Friedel oscillations by an analytical solu-
tion of the non-interacting continuum problem with



3

FIG. 2. (Color online). Upper panel: Particle loss rate
from the lattice model as a function of time elapsed from
the quench, for different system sizes L. The dashed line in-
dicates the regime of constant loss. Lower panel, main plot:
Density profile from the lattice model with L = 501, for differ-
ent times elapsed from the quench. Inset: Friedel oscillations
around the loss site. For all curves γ = 3 and N(0)/L = 0.25,
with N(t) the number of particles.

a localized loss. By using the Green’s functions
method [15], we derive the time-dependent density profile

n(x, t) =
∫
k
|GR(x,−k, t)|2 n0(k), with GR(x, k, t) the

single-particle retarded Green’s function, and n0(k) =
θ(k2F−k2) the momentum distribution in the initial state,
with kF = πn0 the Fermi momentum and n0 the ini-
tial density. The single-particle retarded Green’s func-
tion GR is then evaluated exactly by solving the corre-
sponding Dyson equation [13], and its explicit form is
reported in [15]. By taking the limit t → ∞, we obtain
a stationary value for n(x) corresponding to the second
regime discussed above: in fact, by having already taken
the thermodynamic limit L → ∞ we implicitly assumed
tII → +∞, so that the system is “frozen” in the second
regime.

We then find [15] n(x) − nness ∝ sin(2kFx)/x, which
holds for x � k−1F , with nness the uniform background
of the stationary state. Remarkably, the discontinuity in
the momentum distribution remains at the initial value
of kF [15]. These density modulations will generate,
in an interacting system, an additional barrier renor-
malizing the original one. In fact, for momenta close
to kF , the virtual scattering processes between the two
barriers add up to an effective impenetrable one (for
repulsive interactions) or a vanishing one (for attractive
interactions) [23, 24]. In the following, we show that this
mechanism also applies to the present nonequilibrium,
dissipative case.

Transport properties — To gain further insight on
Eq. (5), we consider the transport properties. The trans-
mission and reflection probabilities T (k) and R(k), re-
spectively, for a particle with momentum k > 0 imping-
ing upon the dissipative impurity can be read off the re-
tarded Green’s function [15]. The loss of unitarity related
to the scattering off the loss barrier is then quantified by

η(k) = 1− T (k)−R(k). (6)

The escape probability η(k) describes the probability
that a particle with momentum k is absorbed into the
bath. η(k), which is related to the Fourier transform of
〈ψ†(t, x = 0)ψ(t′, x = 0)〉 [15], is the key quantity of
the present analysis, for three reasons: i) it bears signa-
tures of the QZE, ii) as a momentum-resolved quantity,
it is sensitive to the renormalization of long-wavelength
modes, and iii) it can be directly related to experimen-
tally measurable quantities.
For the interactionless case η0(k) = 2γvk/(γ+ vk)2, with
vk = |k|/m the group velocity, showing that losses are
suppressed for both vk/γ → 0 and vk/γ → ∞. The
perturbative corrections to T ,R due to the interaction
potential V (x) can be computed in analogy to equilib-
rium [23–25] and they yield [15]

δT = 2α T0R0 log |d(k − kF )|, (7a)

δR = αR0 (R0 + T0 − 1) log |d(k − kF )|, (7b)

with T0,R0 the bare values, d a length scale to be cho-
sen as the largest between the spatial extent of the
interaction V (x) and the Fermi wavelength, and α =

[Ṽ (0) − Ṽ (2kF )]/(2πvF ), Ṽ (k) being the Fourier trans-
form of V (x) and vF ≡ |kF |/m the Fermi velocity. The

two contributions Ṽ (0) and Ṽ (2kF ) derive from the ex-
change and Hartree part of the interaction, respectively;
α > 0 corresponds to repulsive interactions, and α < 0
to attractive ones. While the perturbative corrections (7)
are in principle controlled by an expansion in α� 1, they
actually diverge logarithmically for k → kF . These diver-
gences can be resummed by an RG treatment [15, 23, 24],
leading to the RG flow equations

dT
d`

= −2α T R, dR
d`

= −αR (R+ T − 1) , (8)

with the flow to be stopped at ` = − log |d(k − kF )|.
Eqs. (8) have one stable fixed point: T ∗ = 0, R∗ = 1 for
α > 0 and T ∗ = 1, R∗ = 0 for α < 0. Physically, this
entails that tunneling through the dissipative impurity is
suppressed at k = kF for repulsive interactions, while it
is maximally enhanced for attractive interactions, simi-
larly to the case of a potential barrier [23, 24]. However,
two novel remarkable features, emerge from the solutions
of Eqs. (8). First, for both attractive and repulsive inter-
actions, η∗ = 0, implying that particles with k = kF are
not emitted into the bath, but are actually “trapped” in-
side the wire, signalling emergent unitarity at the Fermi
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level. Second, η(k) approaches its fixed point value in
qualitatively different ways, depending on the sign of α:

η(k) ∼

{
|k − kF |α for α > 0,

−1/ log |d(k − kF )| for α < 0.
(9)

This asymmetry, also visible in the behaviour of T (k)
and R(k) for k → kF , does not occur for the case of
a potential barrier, where the fixed-point values are ap-
proached algebraically in both cases [23, 24]. Eq. (9) is
the key result of this work: the escape probability at
the Fermi momentum is strongly renormalized by fluctu-
ations, which suppress it. For α > 0, this happens as if
γ → +∞, thus producing a QZE; for α < 0, instead, this
happens as if γ → 0, the impurity thus becoming trans-
parent. Fig. 3 (upper panels) shows the RG flow of T ,
R, and η, for both repulsive and attractive interactions.
The flow of η may be non-monotonic depending on the
sign of α and on the bare value η0. To make contact
with the Luttinger formulation and Fig. 1, it is possi-
ble to reparametrize T (k), R(k) and η(k) in terms of a
single function γ̃(k) [15]. For the escape probability one
finds η(k) = 2γ̃(k)/[1 + γ̃(k)]2. The RG flow of γ̃ can be
determined from Eqs. (8) as

dγ̃

d`
= α

γ̃2

1 + γ̃
. (10)

The fixed points of Eq. (8) translate then to γ̃∗ =∞ for
α > 0 and γ̃∗ = 0 for α < 0. γ̃ can therefore be inter-
preted as the effective strength of the localized dissipa-
tion, thus bridging the Luttinger result (5) with the one
obtained from the microscopic model. In fact, for a Lut-
tinger parameter g ' 1, one has 1−g ' g−1−1 ' α [26],
and therefore Eqs. (5) and (10) coincide for γ̃ � 1, upon
the identifications γ̃ ≡ γ. The discrepancy for γ̃ � 1 can
be understood as the limits γ → 0 and α → 0 do not
commute for the nonequilibrium stationary state.

The behaviour of η(k) under RG can be therefore ra-
tionalized in terms of the flow of γ(`) (see Fig. 1): η
reaches its fixed point η∗ = 0 either for γ → ∞ or for
γ → 0, in the former case thus resulting in a fluctuation-
induced QZE, and in the latter one a fluctuation-induced
transparency. In Fig. 3 (lower panels) we show the value
of η(k) as a function of k reconstructed from the RG
flow: its value drops to zero at kF for both attractive
and repulsive interactions. As a consequence of the non-
monotonicity of the RG flow, η(k) may increase for mo-
menta in the vicinity of kF (right panel).

Observables — The fluctuation-induced QZE can be
naturally detected by harnessing the energy or momen-
tum resolved flow of particles leaving the wire, with-
out destructive measurements. For illustrative purposes,
we consider the following model, inspired by the input-
output formalism of quantum optics [11]. The local dis-
sipation originates from the wire being coupled to a con-
tinuum of fermionic modes outside the wire. For definite-
ness, we assume particles to exit the wire by expanding

FIG. 3. (Color online). Upper panel: RG flow of T , R, and
η. For α > 0 (left, γ = 0.2) a fully reflective fixed point
is approached, while for α < 0 (right, γ = 20) the system is
perfectly transmissive at the fixed point. Lower panel: Renor-
malized η as a function of momentum in comparison to the
non-interacting value η0, for α > 0 (left panel) and α < 0
(right panel). For all curves γ = 4.

isotropically in the surrounding vacuum, which could e.g.
be realized in setup Ref. [27] by a local transfer to an un-
trapped internal state. The particles could be described
by operators cq, c

†
q, with q a three-dimensional momen-

tum. These modes are coupled to the wire at x = 0
through the Hamiltonian Hint =

∑
q(gqc

†
qψ0 + h.c.),

with gq the coupling of the q-mode to the wire and
ψ0 ≡ ψ(x = 0). In the second regime, the constant rate
of particles with momentum q and energy εq leaving the
wire is then given by [15]:

d〈c†qcq〉
dt

= θ(EF − εq)
|gq|2

γ
η(εq), (11)

with EF = k2F /2m, thus providing a connection between
η and an experimentally accessible quantity. The bare
Fermi distribution enters Eq. (11) as the approach is
perturbative in the interaction: it is expected to be
smeared out by stronger interactions [12].

Finite temperature and size — The unavoidable pres-
ence of a finite temperature T and system size L in realis-
tic systems can be accounted for by our RG analysis, and
their variation actually leveraged to disclose the novel
collective behaviours described above. In fact, a finite T
(resp. L) cuts off the RG flow a scale `T = − log(d T )
(resp. `L = log(L/d)). As a consequence η(kF ) can
exhibit a non-monotonic behaviour as a function of the
considered length-scale (cf. Fig. 3, upper panels). For in-
stance, the value of η(kF ) increases up to ∼ 100% by re-
ducing the temperature of a gas from TFermi to 0.1TFermi,
thus suggesting that the effects above discussed are ob-
servable within the current experimental setups [27, 28].
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Although in nonequilibrium systems the (effective) tem-
perature may change during the RG flow [16, 29, 30], we
argue that this is not the case in our setup. In fact, we
expect the temperature to be enforced by the extensive
“reservoir” constituted by the far ends of the wire, rather
than by the impurity, which is a local perturbation. A
quantitative answer requires to extend our RG analysis
to two loops, which we leave to future work.

Conclusions — We have shown that a one dimensional
ultracold gas of fermions displays novel many-body ef-
fects in presence of a localized loss. Loss is suppressed
close to the Fermi energy, effectively restoring unitar-
ity. This consequence of the renormalization of the dis-
sipation strength can be interpreted as an incarnation
of the QZE. Moreover, transport properties are modified
similarly to the case of a potential barrier. These ef-
fects would be experimentally accessible by analyzing the
ejected flow of particles energy or momentum resolved,
without further destructive measurements. An analogous
situation to the considered stationary regime could be ob-
tained in experiments with systems coupled to reservoirs
at both ends [15] (cf. Ref. [27]) .
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[3] J. J. Garćıa-Ripoll, S. Dürr, N. Syassen, D. M. Bauer,
M. Lettner, G. Rempe, and J. I. Cirac, New J. Phys.
11, 013053 (2009).

[4] A. J. Daley, J. M. Taylor, S. Diehl, M. Baranov, and
P. Zoller, Phys. Rev. Lett. 102, 040402 (2009).

[5] M. Roncaglia, M. Rizzi, and J. I. Cirac, Phys. Rev. Lett.

104, 096803 (2010).
[6] G. Barontini, R. Labouvie, F. Stubenrauch, A. Vogler,

V. Guarrera, and H. Ott, Phys. Rev. Lett. 110, 035302
(2013).

[7] R. Labouvie, B. Santra, S. Heun, and H. Ott, Phys. Rev.
Lett. 116, 235302 (2016).
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