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Stress-based ensembles incorporating temperature-like variables have been proposed as a route to an equa-
tion of state for granular materials. To test the efficacy of this approach, we perform experiments on a two-
dimensional photoelastic granular system under three loading conditions: uniaxial compression, biaxial com-
pression, and simple shear. From the interparticle forces, we find that the distributions of the normal component
of the coarse-grained force-moment tensor are exponential-tailed, while the deviatoric component is Gaussian-
distributed. This implies that the correct stress-based statistical mechanics conserves both the force-moment
tensor and the Maxwell-Cremona force-tiling area. As such, two variables of state arise: the tensorial angoricity
(α̂) and a new temperature-like quantity associated with the force-tile area which we name keramicity (κ). Each
quantity is observed to be inversely proportional to the global confining pressure; however only κ exhibits the
protocol-independence expected of a state variable, while α̂ behaves as a variable of process.

PACS numbers:

Granular systems are characterized by the absence of ther-
mal fluctuations and their ability to maintain a mechanically
stable, jammed state in the absence of an external driving
force. The formulation of a statistical description of jammed
configurational states has been an open question for the behav-
ior of such athermal, macroscopic particles undergoing solely
repulsive contact-interactions [1–5]. A promising statistical
mechanics candidate, the force-moment ensemble, postulates
a temperature-like state variable, conjugate to stress, called
angoricity [6]. For simulations of frictionless particles, an-
goricity has been shown to underpin an equation of state in
the microcanonical ensemble [7], and for frictional particles,
it has also satisfied a zeroth-law test [8]. However, the correct
functional form of the ensemble remains the subject of recent
debate [9–14], and the issue is closely tied to recent develop-
ments of a general theory of amorphous solids [15, 16].

It is also unknown whether such statistical descriptions are
appropriate, given that interparticle force distributions and
probability densities in configuration space are known to be
dependent on the loading protocol [17, 18]. Numerous sys-
tems, granular [19–21] and otherwise [22, 23], encode system
history. Furthermore, shear-jamming [24, 25] is distinct from
compressive jamming [26], with the jamming transition oc-
curring over a range of packing fractions and with additional
states of minimum shear stress. While some properties of an-
goricity have been observed in shear-jammed systems [27],
there has been no systematic comparison across loading con-
ditions.

To address these questions, we report measurements of par-
ticle positions and force-moment tensors for clusters of par-
ticles within experiments on a photoelastic granular mate-
rial; this allows us to measure vector contact forces at the
particle scale. We subsequently extract the granular vari-
ables of interest in the force-moment ensemble by making
measurements of angoricity for separate tensorial components
and loading protocols. We find that this statistical mechan-
ics framework conserves, under configurational perturbations,
both the force-moment tensor [45] and the Maxwell-Cremona

force-tiling area [11], leading to two protocol-dependent and
one protocol-independent conjugate variables.

Force-moment ensemble.– By analogy to the equilibrium
thermodynamic energy, we calculate the global force-moment
tensor [6], Σ̂ =

∑
N ~rµν⊗ ~Fµν over an experiment containing

N particles (enumerated µ, ν) with centers separated by a dis-
placement ~rµν and interparticle contact force ~Fµν . States of
Σ̂ are enumerated by the number of configurations Ω(Σ̂) and
associated configurational entropy, S = ln Ω. The tensorial
angoricity is correspondingly defined to be αij = ∂S/∂Σij ,
and we expect a Boltzmann-like probability of observing a lo-
cal cluster ofm nearby particles with local force-moment ten-
sor σ̂ within a jammed particulate bath at angoricity α̂, given
by: P(σ̂|α̂) = Ω(σ̂)e−α̂:σ̂/Z(α̂), where : denotes the double
inner (scalar) product, α̂ : σ̂ = Tr(α̂T σ̂).

As an extension to this theory, we incorporate the effect of
the Maxwell-Cremona diagram, which is formed by mapping
contact forces to a tiling of contacting polygons, as a repre-
sentation of static force balance [11]. The total area of the
tiling, a, is a conserved quantity, as rearrangements in force
correspond to transfers of area between polygons [10, 14].
(Note: although only frictionless packings sustain strictly con-
vex force-tiles, we observe 85% of our tiles to be convex even
though they are frictional.) To incorporate this additional con-
servation law, we consider an extended Boltzmann-like term
to account for the probability of observing a cluster of local
force-moment σ̂ and tiling area a:

P(σ̂, a|α̂, κ) =
Ω(σ̂, a)

Z(α̂, κ)
exp (−α̂ : σ̂ − κa), (1)

where α̂ is the global angoricity associated with Σ̂ and
Z(α̂, κ) is the partition function [10, 13]. We futher de-
fine κ = ∂S/∂a as the Lagrange multiplier associated with
a, herein referred to as keramicity (from the Greek word
κὲραµoς meaning tile).

Experimental details.– We conduct experiments on a two-
dimensional granular system composed of N = 890 bidis-
perse (Vishay PhotoStress PSM-4) circular discs with an equal



2

0 2 4
0.26

0.3

0.34

0 2 4
0.26

0.3

0.34

0 2 4
0.26

0.3

0.34

/10⎻3 Nm

bia
xia

l
un

iax
ial

sh
ea

r

ṽ
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FIG. 1: (a) Example photoelastic images at Γ = 2.1×10−3 Nm for
each of three loading schemes – biaxial, uniaxial, and shearA– shown
schematically according to which walls move. ShearB (dashed lines)
is the opposite of shearA (solid lines). Bright particles are un-
der larger force; large-scale light gradients have been removed by
image-processing. (b) Joint probability distributions P(ṽf ,Γ) for
dimensionless mean local free volume ṽf (averaged over clusters
of size m = 8) and global confining pressure Γ for each proto-
col. Dashed lines are linear fits using a weighted average. (c) A
force-balanced particle within a jammed packing has an associated
Maxwell-Cremona tile, formed by a closed loop of all vector forces
acting on a particle.

fraction of radii Rs = 5.5 mm and Rl = 7.7 mm (Rl/Rs =
1.4). A subfluidizing upflow of air passing through a porous
polypropylene sheet floats the particles to eliminate basal fric-
tion. A rigid support grid ensures that the surface is level to
reduce drift, and smooth to prevent particle clustering. Further
experimental details are provided in [8].

Each granular configuration is subject to quasistatic load-
ing under one of three protocols: (1) uniaxial compression,
(2) biaxial compression, and (3) simple shear, shown in Fig. 1.
Under all protocols, the discs are initially confined to a square
region of 48×48 cm bounded by two walls controlled by step-
per motors, and two fixed walls. Under uniaxial compression,
a single motorized wall compresses the system with a series
of steps of constant size (0.6 mm), while under biaxial com-
pression, both motorized walls compress the system with the
same step size. The loading walls then retract and the system
dilates to a loose packing, activating a brief overheard flow of
turbulent air which rearranges the particles to produce a new

random configuration. Under simple shear, after slowly com-
pressing to approach the jamming transition, one wall moves
in while another moves out. We conduct the shear experiments
under both combinations of the wall displacements (denoted
by shearA and shearB) to isolate the effects of experimental
asymmetries such as boundary misalignment or height/gravity
gradients.

We repeat the experiment to obtain at least 1,000 packings
under each protocol, and for each packing capture images
taken under polarized light, which contain the photoelastic
response to interparticle forces. We track particle positions
using MATLAB and use Voro++, a Voronoı̈ tessellation tool,
to determine disc neighbors and local volumes [28]. From
the polarized images, we determine the normal and tangential
contact forces using non-linear least-squares minimization be-
tween a numerically constructed fringe pattern and the actual
image [29, 30]. This provides the forces ~Fµν and relative po-
sitions ~rµν needed to construct the force-moment tensor. The
full dataset will be available for download at [31].

Local free volumes, preferred to global values for particle-
scale statistical mechanics [32–34, 46], are calculated for clus-
ters of m = 8 particles, using the m − 1 particles nearest to
each central particle. To account for the particle bidispersity
[35], we determine the local free volume of a cluster from
vf = (1/m)

∑
i vi − vmin(Ri) where Ri is Rs (or Rl) for

small (or large) particles and vi is the corresponding parti-
cle Voronoı̈ volume. Normalizing by the smallest possible
Voronoı̈ volume vmin and averaging over many randomly se-
lected clusters yields the global measure ṽf = 〈vf/vmin〉.
Figure 1b demonstrates that histograms of the mean local free
volume ṽf , and global confining pressure Γ = 1

NTr(Σ̂) vary
depending on the loading protocol. Note that this “pressure”
has units of Nm instead of the usual 2D pressure N/m2 since
we have chosen, for simplicity, not to divide by the particle
area.

We observe that across all three protocols there are two
characteristic mean free volumes: ṽf ≈ 0.28 observed for
biaxial loading and ṽf ≈ 0.32 observed for shear load-
ing. The looser-packed value for sheared samples is expected
from Reynolds dilatancy and the Poynting effect [36–38, 44].
States prepared by uniaxial compression exhibit both values,
in line with principal component analysis [39]. Along each
ṽf (Γ) characteristic curve, we observe ṽf decreases approxi-
mately linearly as a function of Γ, except in the case of shear,
which by experimental design was constrained to constant
volume and therefore free volume.

Measuring temperaturelike quantities.– In the absence of
an explicitly known partition function, we measure the tem-
peraturelike quantities (α̂, κ) using the method of overlapping
histograms [40, 41], as has previously been applied to granular
ensembles [7, 8, 13, 34]. We construct histograms of the com-
ponents of σ̂ over the entire range of (ṽf ,Γ) shown in Fig. 1,
binning states by the global measure Γ. We neglect data with
Γ < 10−3 Nm, set by the lower limit of our force resolution.
From within each packing, we randomly generate clusters of
size m = 8 from nearby discs. For each cluster, the force-
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FIG. 2: (a) Histograms of local normal force-moment component p
on clusters of m = 8 particles, at fixed Γi, for all three loading pro-
tocols (shearA and shearB combined) (b) Associated histogram log-
ratios R taken between probability distributions observed at confin-
ing pressure Γi and Γj0 = 1

2
max(Γi). EachR(p) is fit to a straight

line with slope αpj − α
p
i (Eq. 4, with κj − κi ≈ 0).

moment tensor is computed additively over the particles in the
cluster, and can be resolved into a normal p = (σ1 + σ2)/2
and deviatoric τ = (σ1 − σ2)/2 components for eigenvalues
σ1 and σ2. As observed by [7, 8], m = 8 is large enough that
measurements of temperature-like variables are independent
of m.

Under each of the four protocols, we compute the two as-
sociated distributions of the force-moment tensor, P(p|Γ) and
P(τ |Γ). As shown in Fig. 2-3, we observe that as confining
pressure increases, the distributions of both normal and devi-
atoric components broaden [7–9, 13]. Note that the states pre-
pared under the two different shear-loading protocols (A, B)
were found to exhibit spontaneous symmetry breaking, result-
ing in a bias towards negative and positive deviatoric compo-
nents, respectively [42]. Consequently, we treat these two pro-
tocols separately. For P(p) in both shear protocols, the mean
and variance are indistinguishable from each other, while for
P(τ), the mean is translated in opposite directions.

To proceed with the overlapping histogram methods, we
utilize the ratioRσ(σ,Γi,Γj) ≡ log [P(σ|Γi)/P(σ|Γj)] with
σ being either p or τ . To give this ratio more meaning,
consider the distribution of Eq. 1 under the assumption that:
(1) the local force tiling area a is strongly peaked at det(σ̂)
[10, 11, 13], and (2) the off-diagonal components of the lo-
cal stress σ̂ are small compared to the diagonal elements (see
Supplemental Material). For isotropically prepared states, the
normal stress typically dominates the shear stress [24, 27]. In
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FIG. 3: (a) Histograms of local deviatoric force-moment component
τ on clusters of m = 8 particles, at fixed Γi, for all four loading pro-
tocols (shearA and shearB separated) (b) Associated histogram log-
ratios R taken between probability distributions observed at confin-
ing pressure Γi and Γj0 = 1

2
max(Γi). EachR(τ) is fit to a parabola

with coefficients ατj − ατi and κj − κi (Eq. 5).

this limit, we can integrate Eq. 1 to isolate distributions:

P(p|Γ) =
Ω̃(p,Γ)

Z(α̂, κ)
exp (−αpp− κp2), (2)

P(τ |Γ) =
Ω̂(τ,Γ)

Z(α̂, κ)
exp (−αττ + κτ2), (3)

for modified densities of state Ω̄ and Ω̃ (see Supplemental
Material). Thus, we have three temperature-like quantities:
αp and ατ , the normal and deviatoric components of the an-
goricity tensor, and κ, the keramicity. By taking the logarithm
ratios of these two distributions, (Eq. 2-3) are

Rp(p,Γi,Γj) = Rp0 + (αpj − αpi )p+ (κj − κi)p2, (4)

Rτ (τ,Γi,Γj) = Rτ0 + (ατj − ατi )τ − (κj − κi)τ2, (5)

whereR0 = log (Zi/Zj), and (i, j) denotes two sets of states
of pressure Γi and Γj (see Supplemental Material). Because
ratios are sensitive to counting error in small values of the
denominator, we only examine data for which P > 10.

In Fig. 2b and Fig. 3b, we illustrate typical logarithm ratios
for several representative histograms; all ratios are computed
relative to the same reference histogram. We observe that Rp
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FIG. 4: Temperature-like variables: (a) Normal inverse angoricity, 1/αp against confining pressure Γ, as computed for three loading conditions
[αpΓ = 0.29± 0.01 (biaxial), 0.34± 0.01 (uniaxial), 0.43± 0.01 (shear)]. (b) Deviatoric inverse angoricity, 1/ατ plotted against the same,
indicating opposite dependencies on confining pressure based on the loading protocol [ατΓ = −1.5 ± 0.1 (uniaxial), 1.6 ± 0.1 (biaxial),
0.59± 0.03 (shearA), −1.0± 0.3 (shearB)]. (c) The inverse keramicity (1/κ) evolves linearly with confining pressure and does so with equal
proportionality under all protocols [κΓ = (3.0± 0.1)× 10−3]. Dashed lines represent linear fits.

is linear in p with some arbitrary offset associated with the
ratio of partition functions. The slope of Rp(p) gives the dif-
ferential normal angoricity, αpj − αpi between states at con-
fining pressures Γj and Γi. However, the ratios in Fig. 2b do
not provide confident fits beyond a first order polynomial in
p, such that the difference κj − κi cannot be established from
this approach due to experimental limitations in the range of
p [13].

In contrast, similar ratios computed in Fig. 3b are found to
be parabolic with a non-zero second-order coefficient, match-
ing the expectation from Eq. 5, and we fit these ratios to a
polynomial: xτ2 + yτ + z. The fit parameter x, correspond-
ing to changes in the variance of force-moment component
distributions, gives x = κi − κj , the difference in keramicity
between states of global confining pressure Γi and Γj . As be-
fore, we also identify the fit parameter y to be associated with
y = ατj − ατi . Thus, by taking the logarithm of the ratio of
two closely-overlapped histograms with sufficient proximity
in local free volume [7], we can compute relative measures of
αp, ατ , and κ to within an additive constantR0 [8].

The presence of a τ2 term is found for all three protocols,
in agreement with predictions by Wu and Teitel [13], in which
the multipliers αp and κ are strictly related to only global mea-
sures of pressure. This allows the Boltzmann-like factor found
in Eq. 1 to include terms that are quadratic in the components
of the force-moment tensor.

Equations of state.– As shown for angoricity under
isotropic compression, we propose that the computed
temperature-like state variables can be described by equations
of state of the form αΓ = λ [7, 8, 43], where α represents any
of (αp, ατ , κ) and λ is a constant. To test experimental ad-
herence to this hypothesis, we identify 1

α = 0 (and 1
κ = 0) as

corresponding to the jamming point (Γ = 0) and reference dif-
ferential temperature-like variable measurements accordingly
(see Supplemental Material for procedure).

Repeating this procedure for all three temperature-like vari-

ables, we observe that the equation of state holds in all cases
(Fig. 4). While for κ the constant λ is independent of loading
protocol, for both αp and ατ the constant exhibits significant
protocol-dependence. Interestingly, λ is always positive for
αp, but the sign varies for ατ (values given in caption), cor-
responding to the direction of translation of P(τ) in Fig. 3a,
some of which are associated with experimental asymmetries.
The magnitudes of the λ agree within 2 standard errors for
shearA vs. shearB, and the signs differ due to the change in
sign of τ . Because both components of α̂ are observed to be
protocol-dependent, the tensorial angoricity is not valid as a
variable of state, but rather a variable of process. By contrast,
the keramicity behaves as a state variable.

Angoricity measures a granular packing’s ability to accom-
modate configurational rearrangements of equivalent global
force-moment tensor (equivalently, stress) on a component-
wise basis, αij = ∂S/∂Σij . Thus, we have shown that as
packings are loaded above jamming, they gain more configu-
rations from the presence of forces to be distributed (Fig. 4a).
Meanwhile, as 1

αp (Fig. 4a) and 1
ατ (Fig. 4b) grow in magni-

tude, the responsiveness of the number of configurations to in-
creases in global stress (∂S/∂Σ, where Σ is either the normal
or deviatoric component of Σ̂) decreases. Finally, the proto-
col by which a granular packing is loaded does not impact the
trend that more compressed states gain fewer additional con-
figurations from equivalent additions to the global Maxwell-
Cremona area tiling (Fig. 4c).

Conclusion.– We have demonstrated non-negligible cur-
vature in the ratio of overlapped force-moment tensor his-
tograms in jammed states of granular systems. This obser-
vation points towards a formulation of the force-moment en-
semble that requires conservation of Maxwell-Cremona area
tiling. The associated temperature-like variables all grow in-
versely with respect to confining pressure, but the keramicity,
associated with the force tiling, is the only valid variable of
state. The path-dependence of variables describing soft mat-



5

ter systems is not unfamiliar, but protocol-dependent scaling
could be a route to a comprehensive granular equation of state.
Meanwhile, the generalization of the force-moment ensemble
to account for force-tiling statistics may yield a comprehen-
sive statistical mechanics framework.
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