
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Quantum Oscillations of the Positive Longitudinal
Magnetoconductivity: A Fingerprint for Identifying Weyl

Semimetals
Ming-Xun Deng, G. Y. Qi, R. Ma, R. Shen, Rui-Qiang Wang, L. Sheng, and D. Y. Xing

Phys. Rev. Lett. 122, 036601 — Published 24 January 2019
DOI: 10.1103/PhysRevLett.122.036601

http://dx.doi.org/10.1103/PhysRevLett.122.036601


Quantum Oscillations of The Positive Longitudinal Magnetoconductivity:

a Fingerprint for Identifying Weyl Semimetals

Ming-Xun Deng1,2, G. Y. Qi 1, R. Ma 3, R. Shen1,4, Rui-Qiang Wang2, L. Sheng1,4,∗ and D. Y. Xing1,4†
1 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China

2Laboratory of Quantum Engineering and Quantum Materials,

ICMP and SPTE, South China Normal University, Guangzhou 510006, China
3 Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean,

Nanjing University of Information Science and Technology, Nanjing 210044, China
4 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

(Dated: January 4, 2019)

Weyl semimetals (WSMs) host charged Weyl fermions as emergent quasiparticles. We develop
a unified analytical theory for the anomalous positive longitudinal magnetoconductivity (LMC)
in a WSM, which bridges the gap between the classical and ultra-quantum approaches. More
interestingly, the LMC is found to exhibit periodic-in-1/B quantum oscillations, originating from the
oscillations of the nonequilibrium chiral chemical potential. The quantum oscillations, superposed
on the positive LMC, are a remarkable fingerprint of a WSM phase with chiral anomaly, whose
observation is a valid criteria for identifying a WSM material. In fact, such quantum oscillations
were already observed by several experiments.

PACS numbers: 72.10.-d, 73.43.Qt, 75.45.+j

Weyl semimetals (WSMs), whose low-energy excita-
tions are Weyl fermions [1] carrying charges, have re-
cently spurred intensive and innovative research in the
field of condensed matter physics [2–8]. The ultra-
high mobility and spectacular transport properties of
the charged Weyl fermions can find applications in high-
speed electronic circuits and computors [9–11]. The low-
energy spectrum of a WSM forms non-degenerate three-
dimensional (3D) Dirac cones around isolated degener-
ate band touching points, referred to as Weyl points [2].
Weyl points with opposite chiralities, playing the parts
of the source and sink of Berry curvature in momentum
space, always come in pairs [12, 13]. The appearance of
the Weyl points requires breaking either the spatial in-
version or time-reversal symmetry. Weyl points with op-
posite chiralities in momentum space are connected by
the nonclosed Fermi arc surface states. [2].

The WSM state was first realized experimentally in
TaAs [14–16], following the theoretical predictions [17,
18], and later in several different compounds [10, 19–
30]. WSMs display many anomalous transport proper-
ties, such as positive longitudinal magnetoconductivity
(LMC), optical gyrotropy [31], planar Hall effect [32],
all of which are induced by the chiral anomaly [13], and
nonlocal quantum oscillations of the Fermi arc surface
states [33]. The chiral anomaly, also termed as the Adler-
Bell-Jackiw anomaly, means the violation of the separate
number conservation laws of Weyl fermions of different
chiralities. Parallel electric and magnetic fields can pump
Weyl fermions between Weyl valleys of opposite chiral-
ities, and create a population imbalance between them,
therefore resulting in a positive LMC (or negative magne-
toresistance). The anomalous LMC, as an exotic macro-
scopic quantum phenomenon, has been attracting intense
experimental [10, 20–30] and theoretical [7, 34–37] inter-

est.

In order to identify a WSM material, the ARPES ex-
periments were used to directly observe the Weyl nodes
and Fermi arcs [14–16, 19]. However, the ARPES identi-
fication is sometime limited by spectroscopic resolutions.
Another widely-employed method is to measure the pos-
itive LMC induced by the chiral anomaly [10, 20–29].
The observation of the positive LMC is only a neces-
sary condition for identifying the WSM phase, but not
a sufficient condition. On the other hand, in the clas-
sical limit, |EF | ≫ ~ωc, an analytical formula for the
anomalous LMC was derived in Refs. [35, 36], yielding
∆σ(B) ∝ (B/EF )

2 with EF the Fermi energy, ωc the cy-
clotron frequency, and B the strength of magnetic field.
In the opposite ultra-quantum limit, |EF | ≪ ~ωc, it was
shown independently [35, 37] that ∆σ(B) ∝ B. While
the above quadratic or linear field dependence of the pos-
itive LMC was suggested as an additional signature of a
WSM, in experiments the simultaneous presence of neg-
ative field-dependent LMC due to destruction of weak
anti-localization [10, 20–29] often makes comparison of
experimental data with the theories equivocal. Besides,
in the classical limit, Andreev and Spivak [38–40] recently
claimed that positive LMC might also occur in some con-
ventional conductors, by assuming that the disorder po-
tential is smooth on the interatomic scale. Theoretical
investigation of the anomalous LMC in the intermediate
regime between the classical and ultra-quantum limits is
still absent. It is urgent to develop a unified theory across
the two limits by taking into account the interplay be-
tween the chiral anomaly and Landau quantization, and
in particular to seek out a fingerprint identification of a
WSM material based on transport measurements.

The main purpose of this Letter is twofold. First,
integrating the Landau quantization with Boltzmann



2

-5 0 5

-4

-2

0

2

4

(a)

-5 0 5

(b)

0 25 50

(c)

FIG. 1: The LLs in (a) χ = +, and (b) χ = − Weyl valleys.
(c) The DOS of the Weyl fermions (horizontal axis) as a func-
tion of normalized Fermi energy EF/~ωc (vertical axis). Blue
dashed lines in (a,b) are an enlarged illustration of the ef-
fect of chiral anomaly. In the steady state, the local chemical
potentials in the two valleys shift upward and downward rel-
ative to EF , respectively, by an equal amount ∆µ, indicating
a transfer of charged fermions between the two valleys.

equation, we derive a unified analytical formula for the
anomalous LMC in a WSM, which is applicable to a
broad range from the classical to ultra-quantum limit.
It recovers the known results in the two opposite lim-
its. More interestingly, we find that the anomalous posi-
tive LMC displays periodic-in-1/B quantum oscillations,
originating from the oscillations of the nonequilibrium
chiral chemical potential. Second, we propose that the
quantum oscillations superposed on the positive LMC are
an important fingerprint for identifying a WSM material
with chiral anomaly, which was not disclosed in previ-
ous theories. Unlike the quadratic or linear field depen-
dence, the quantum oscillations of the anomalous LMC
will not be concealed by the presence of negative LMC
related to weak anti-localization. In fact, such quantum
oscillations were already observed by several experimen-
tal works, e.g., see Figs. 3(a,b) in Ref. [21], Fig. 2(d) in
Ref. [26], Fig. 3(d) in Ref. [29], and Fig. 3 in Ref. [30].

Let us start by considering a 3D WSM, which has two
Weyl points with opposite chiralities, labelled by χ = ±.
When a magnetic field B = (B, 0, 0) is applied along
the x direction, the continuum Hamiltonian for the low-
energy electrons in a Weyl valley reads

Hχ(k) = χυF (~k+ eA) · σ , (1)

where the electron charge is taken to be −e, υF is the
Fermi velocity, σ = (σx, σy, σz) are the Pauli matrices,
k is the wave vector, and A is the vector potential de-
fined by B = ∇×A. The Zeeman field is omitted, as it
just causes a translation of kx for this linearized Hamil-
tonian, and will not lead to observable effect. The energy
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FIG. 2: (a) ∆µ, (b) σD, and (c) ∆σ(B) as functions of
EF/~ωc for τinter = 5τintra. The red dashed curve plot-
ted in (c) is calculated from the classical formula (14). We
set the magnetic field to be B = 1T , and define σ0 =
2e2

h

e[B=1T ]υF τintra

h
as the unit of conductivity, for conve-

nience.

spectrum can be solved exactly, yielding

εχn(kx) =

{

−χ~υFkx n = 0

sgn(n)
√

2|n|(~ωc)2 + (~υFkx)2 n 6= 0
(2)

with ℓB =
√

~/eB as the magnetic length and ωc =
υF/ℓB. The degeneracy of each Landau level (LL) is
equal to Ωχ

n = 1/2πℓ2B per unit cross-section. The longi-
tudinal group velocity for the n-th LL is given by

υχ
x,n(kx) =

∂εχn(kx)

~∂kx
=

{

−χυF n = 0

~υ2
Fkx/ε

χ
n(kx) n 6= 0

. (3)

The LLs are plotted in Figs. 1(a) and 1(b), whose slopes
correspond to group velocities υχ

x,n(kx). In each Weyl
valley, the n = 0 LL is chiral, manifesting the chirality of
the Weyl point, and all n 6= 0 LLs are achiral.
The two valleys have the identical density of states

(DOS). The DOS at EF of a single valley is given by
ρ(EF ) = ρ0Θ, where ρ0 = 1/2πℓ2BhυF , and

Θ = 2

nc
∑

n=0

1

λn
− 1 , (4)

with λn =
√

1− 2|n|(~ωc/EF)2. Here, nc =
sgn(EF )int

[

E2
F /2(~ωc)

2
]

is the index of the highest (low-
est) LL crossed by the Fermi level for EF > 0 (EF < 0).
The DOS ρ(EF ) is plotted in Fig. 1(c). It oscillates
strongly with changing EF due to the oscillating factor
Θ. Whenever the top or bottom of a LL passes through
EF , i.e., at EF = sgn(n)

√

2|n|~ωc with n 6= 0, ρ(EF )
diverges periodically, exhibiting van Hove singularities.
Upon application of an electric field E = (E, 0, 0)

along the x direction, namely, E ‖ B, the linear-response
steady-state electron distribution function for the n-th
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LL in the χ valley in general takes the form

fχ
n (kx) = f0(ε

χ
n)− f ′

0(ε
χ
n)g

χ
n(kx) , (5)

where f0(ε
χ
n) = 1/[e(ε

χ
n−EF )/kBT + 1] is the equilibrium

distribution function, f ′
0(ε

χ
n) = ∂f0(ε

χ
n)/∂ε

χ
n, and gχn(kx)

describes the deviation of the electron distribution func-
tion from f0(ε

χ
n). The linearized Boltzmann equation

reads

eυχ
x,nE = −

gχn(kx)− gχ
τintra

−
gχ

τinter
, (6)

with gχ = 〈gχn(kx)〉χ, where τintra and τinter stand for the
transport relaxation times due to the electron intravalley
and intervalley scattering by impurities. The scattering
terms on the right-hand side of Eq. (6) account for the
fact that the intravalley scattering can only relax the sys-
tem toward local equilibrium within each valley, and the
intervalley scattering is responsible for relaxation of the
system toward the global equilibrium between the val-
leys. It is assumed that τinter ≫ τintra, as the separation
of the Weyl points in the Brillouin zone usually makes the
intervalley scattering much weaker than intravalley scat-
tering. Here, the average 〈· · · 〉χ runs over all electron
states at the Fermi level in the χ valley, defined as

〈· · · 〉χ =

∑

n
1

2πℓ2
B

∫

dkx

2π [−f ′
0(ε

χ
n)](· · · )

∑

n
1

2πℓ2
B

∫

dkx

2π [−f ′
0(ε

χ
n)]

. (7)

From Eq. (6), it is easy to obtain a formal solution for
gχn(kx),

gχn(kx) = −eυχ
x,nEτintra +

(

1− τintra
τinter

)

gχ . (8)

The unknown gχ on the right hand side of Eq. (8) can
be solved self-consistently by averaging the both sides of
Eq. (8) at the Fermi level, yielding

gχ = −〈υχ
x,n〉χeEτinter . (9)

We notice that only the chiral n = 0 LL in the χ valley
makes nonzero contribution to 〈υχ

x,n〉χ and in turn to gχ.
g+ and g− are equal in magnitude and opposite in sign,
and so we denote g+ ≡ −g− = ∆µ.
By substitution of Eq. (9) into Eq. (8), we obtain

gχn(kx) = −eυχ
x,nEτintra + χ∆µ . (10)

The term linear in τintra/τinter ≪ 1 in Eq. (8) can now
be omitted. According to Eq. (5), the second term in Eq.
(10) corresponds to the nonequilibrium local chemical po-
tentials in the χ = ± valleys relative to EF . Therefore,
∆µ is called the chiral chemical potential [41]. A nonzero
∆µ, as illustrated by the blue lines in Fig. 1(a,b), indi-
cates that an imbalance of carrier density is established
between the two Weyl valleys.

The electrical current density is given by

jx =
−e

2πℓ2B

∑

χ,n

∫

υχ
x,n(kx)g

χ
n(kx) [−f ′

0(ε
χ
n)]

dkx
2π

. (11)

Substituting Eq. (10) into Eq. (11), we divide the con-
ductivity into two parts σ(B) ≡ jx/E = σD + ∆σ(B).
The zero-field Drude conductivity is given by

σD =
nee

2

~kF
υF τintra , (12)

with kF = |EF |/~υF and ne =
1

3π2 k
3
F as the carrier den-

sity.
At zero temperature, we can obtain ∆µ = eEle/Θ with

le = υF τinter . To the leading order in τintra/τinter ≪ 1,
the LMC ∆σ(B) ≡ [σ(B) − σD] is derived to be

∆σ(B) =
2e2

h

eBυF τinter
h

1

Θ
. (13)

This quantum formula is the central result of our work.
∆σ(B) contains an oscillating factor 1/Θ, which is intro-
duced in Eq. (4). Another feature of ∆σ(B) is that it
is proportional to the intervalley relaxation time τinter ,
because the nonequilibrium chiral chemical potential can
only relax via intervalley scattering [35, 36].
In Figs. 2(a-c), we plot the calculated ∆µ, σD and

∆σ(B) as functions of the normalized Fermi energy
EF /~ωc. As mentioned above, ∆µ is inversely propor-
tional to the electron DOS. At EF = sgn(n)

√

2|n|~ωc

with n 6= 0, where the DOS diverges, ∆µ vanishes pe-
riodically. ∆σ(B) actually originates from ∆µ, so that
they exhibit synchronous oscillations. For |EF| ≫ ~ωc,
if we neglect the oscillations in ∆σ(B), by assuming
EF not very close to sgn(n)

√

2|n|~ωc with n 6= 0, we
can replace the summation over n in Θ by an integral
∑nc

n=1 →
∫ nc

0
dn, and then obtain Θ ≃ 2(EF /~ωc)

2. In
this case, Eq. (13) reduces to

∆σ(B) =
e2

4π2~

(eB)2υ2
F

E2
F

υF τinter , (14)

which recovers the classical formula obtained in Refs. [35,
36], and its result is also plotted in Fig. 2(c) as a red
dashed line. The classical formula does not show any
oscillations, and is approximately consistent with the en-
velope of the quantum formula for |EF | ≫ ~ωc. For
relatively strong magnetic field, |EF | . ~ωc, however,
the two formulas deviate from each other substantially.
In the strong-field regime, for |EF | <

√
2~ωc, where the

Fermi level crosses only the n = 0 LLs, we have nc = 0
and Θ = 1. In this limiting case, the quantum formula
(13) can be simplified to

∆σ(B) =
e2

2π2~

eBυF τinter
~

. (15)
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FIG. 3: (a) ∆µ, and (b) ∆σ(B) versus the magnetic field B at
zero temperature. (c) The data of (b) are replotted to show
the periodic-in-1/B dependence of ∆σ(B) (black line), and
the results at two finite temperatures are also shown. The
red dashed lines in (b) and (c) are obtained from classical
formula (14). Here, σ0 is defined in Fig. 2, and the Fermi

energy is set to EF = 2~ωc|B=1T = 2υF

√

e~[B = 1T ]. In-
set: the oscillation amplitude A of the LMC as a function of
temperature.

This formula is in agreement with that derived in Ref. [35]
in the ultra-quantum limit (except for an extra prefac-
tor 1/2 in the latter). The unsaturated LMC becomes
linearly scaled with B, being independent of EF .
Apart from varying electron Fermi energy EF , the

quantum oscillations in the LMC predicted by Eq. (13)
can also be observed in experiments conveniently by vary-
ing the magnetic field B. In Figs. 3(a) and (b), we plot
∆µ and ∆σ(B) as functions of B. We see that both
of them oscillate with B. As has been discussed, both
∆µ and ∆σ(B) drop to zero at EF = sgn(n)

√

2|n|(~ωc)2

with |n| 6= 0, or say, at 1/B = 2|n|e~ (υF /EF )
2
. There-

fore, ∆σ(B) is periodic-in-1/B with the period

∆

(

1

B

)

= 2e~

(

υF
EF

)2

. (16)

For the parameters chosen in Fig. 3, ∆ (1/B) = 0.5/T .
In Fig. 3(c), we replot the LMC as B−2∆σ(B)/σ0 ver-
sus 1/B. We see that the constant oscillation period is
indeed 0.5/T . Moreover, the envelope of ∆σ(B) devi-
ates appreciably from the B2 dependence predicted by
the classical formula for relatively small 1/B (large B).
For finite temperatures, we perform numerical calcu-

lations. We focus on the parameter regime, kBT ≪√
2~ωc ≤ |EF |, which is essentially the necessary con-

dition for observing apparent quantum oscillations of the
LMC. In this regime, because kBT ≪ |EF |, we can

neglect the temperature dependence in the equilibrium
chemical potential for simplicity. The nonequilibrium
chiral chemical potential ∆µ and the LMC are calculated
by using Eqs. (9)-(11). The calculated results for two fi-
nite temperatures are also shown in Fig. 3(c). We see that
the quantum oscillations become weaker gradually and fi-
nally fade out with increasing temperature, in agreement
with experimental observations [21, 26, 29, 30]. Further-
more, from Fig. 3(c), it is found that for a fixed mag-
netic field strength, the LMC can increase or decrease
with increasing temperature, depending on whether the
field strength is near a valley or near a peak. This could
explain the non-unified temperature dependencies of the
LMC observed in Ref. [30]. In the inset of Fig. 3, the
oscillation amplitude A of the LMC, namely, the differ-
ence between the highest peak and the nearest valley of
∆σ(B), is plotted as a function of temperature. The am-
plitude decreases monotonically with temperature, ex-
hibiting Lifshitz-Kosevich type behavior.

Finally, we also suggest to study the optical conductiv-
ity of a WSM in an ac driving electric field with frequency
ω. In the low-frequency regime, i.e., ωτinter ≪ 1, the chi-
ral chemical potential ∆µ can keep up with the oscilla-
tion of the ac field, and oscillates synchronically, so that
the LMC induced by the chiral anomaly still happens,
similarly to the dc case. However, in the high-frequency
regime, ωτinter ≫ 1, there is no enough time for ∆µ to
build up and relax each cycle, and so the LMC is expected
to vanish. Therefore, with increasing ω, it will be inter-
esting to observe the transitional change of the LMC from
a finite value to vanishing around ω ∼ 1/τinter , which
provides a possible way to measure the key parameter
τinter directly. For typical values of the transport relax-
ation time, such a change is estimated to occur in the
microwave or infrared frequency range.

In summary, we have derived a unified quantum for-
mula, Eq. (13), for the chiral-anomaly-induced positive
LMC in WSMs. It predicts periodic-in-1/B quantum
oscillations of the positive LMC, as a remarkable finger-
print for identifying a WSM material. The quantum os-
cillations of the anomalous LMC are quite different from
the usual SdH oscillations, the latter appearing in the
transverse conductivity with E ⊥ B. The quantum os-
cillations superposed on the positive LMC are a valuable
criterion for identifying a WSM material. We have con-
fined ourselves to the limit of weak impurity scattering,
where the leading-order effect of the impurity potential
can generally be included by the scattering terms of the
Boltzmann equation. The effect of relatively strong im-
purity potential will be similar to that of finite temper-
atures, as shown in Fig. 3(c). Increasing the strength of
impurity potential will gradually decrease and eventually
destroy the quantum oscillations. However, we expect
that the quantum oscillations, as an intrinsic property of
the anomalous LMC, will emerge in high-quality WSMs
at sufficiently strong magnetic fields and low tempera-
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tures.
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