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Trapped ions offer a pristine platform for quantum computation and simulation, but improving their coherence
remains a crucial challenge. Here, we propose and analyze a new strategy to enhance the coherent interactions
in trapped-ion systems via parametric amplification of the ions’ motion—by squeezing the collective motional
modes (phonons), the spin-spin interactions they mediate can be significantly enhanced. We illustrate the power
of this approach by showing how it can enhance collective spin states useful for quantum metrology, and how
it can improve the speed and fidelity of two-qubit gates in multi-ion systems, important ingredients for scalable
trapped ion quantum computation. Our results are also directly relevant to numerous other physical platforms
in which spin interactions are mediated by bosons.

Trapped ions are amongst the best developed implementa-
tions of numerous quantum technologies, including quantum
computers [1], quantum simulators [2], and quantum mea-
surement devices [3]. For example, universal quantum gate
sets have been implemented with extremely high fidelity in
small systems [4, 5], while quantum spin dynamics and en-
tanglement generation have been demonstrated amongst tens
[6] and even hundreds [7] of ions. For all of these appli-
cations, the general approach is to identify a qubit, i.e. two
metastable atomic states, and then engineer interactions be-
tween qubits by controllably coupling them to the ions’ col-
lective motion (phonons), typically using lasers [1, 8] or mag-
netic field gradients [9, 10]. Putting aside the details of what
specifically constitutes a qubit (hyperfine states of an ion, Ry-
dberg levels of a neutral atom, charge states of a supercon-
ducting circuit), and what type of boson mediates interactions
between them (phonons or photons), this basic paradigm of
controllable boson-mediated interactions between qubits is at
the heart of many physical implementations of quantum tech-
nologies. In all such systems, a key technical challenge is to
make the interactions as strong as possible without compro-
mising the qubit.

For trapped ions, the strength of interactions between qubits
(from here forward called spins) is often limited by the avail-
able laser power or by the current that can be driven through
a thin trap electrode. Where these technical limitations can be
overcome, other more fundamental limits remain. For exam-
ple, the scattering due to the laser beams that generate spin-
spin interactions can be the dominant source of decoherence
[4, 5, 7], in which case using more laser power is not necessar-
ily helpful [11–13]. Moreover, in many-ion strings larger laser
power can lead to decoherence through off resonant coupling
to undesirable modes, a source of decoherence that becomes
more severe with increasing ion number [14]. (Although this
effect may be mitigated, it requires modulating the laser pa-
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FIG. 1. (Color online). Spin-spin interactions amongst trapped ions
are mediated by phonon exchange, and their strength is proportional
to the rate at which area (Φ) is enclosed by the phonon trajectories in
phase space. The trajectories enclose area faster with parametric am-
plification (orange ellipse) than without (red dashed circle), leading
to stronger spin-spin interactions.

rameters in a complicated fashion [14–16].) In this Letter, we
propose a straightforward experimental strategy to increase
the strength of boson-mediated spin interactions that can also
overcome the aforementioned limitations, and is sufficiently
flexible to be relevant to numerous other systems in which
qubits interact by exchanging bosons. In particular, we con-
sider modulating the ions’ trapping potential at nearly twice
the typical motional mode frequency [17]. Related forms
of parametric amplification (PA) of boson-mediated interac-
tions have been considered recently in systems ranging from
phonon-mediated superconductivity [18], to optomechanics
[19] and cavity/circuit QED [20, 21]. Our work goes further
in that we determine the effects of PA in a driven multimode
system, provide a simple physical explanation of its effects
based on amplified geometric phases (see Fig. 1), and deter-
mine the capability of PA to enhance specific quantum infor-
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mation tasks performed with trapped ions.
Typically, spin-spin interactions between trapped ions are

induced through spin-dependent acquisition of area swept out
by phonon trajectories in phase space (Fig. 1). An area Φ pro-
duces a multiplicative phase e−iΦ of the corresponding spin
state, a geometric phase that depends only on the enclosed
area [22–24]. The spin dependence can be achieved by driv-
ing the ions’ motion with a spin-dependent force (SDF), with
characteristic interaction energy f (defined below). Once
spin-dependent displacements have been seeded by the SDF,
they can be amplified spin-independently by modulating the
trapping potential with a carefully chosen phase relative to
the applied SDF (Fig. 1). Without PA, the time it takes to ac-
cumulate a particular geometric phase Φ—corresponding to
the generation of a particular entangled spin state—is lower
bounded by tmin ∝

√
Φ/ f . With PA this scaling is modified to

tmin ∝ S
√

Φ/ f , (1)

where S < 1 is the degree of squeezing in the squeezed me-
chanical quadrature, enabling a particular entangled state to be
created faster for fixed laser power or magnetic field gradient.

Trapped-ion Quantum simulators.—Before describing the
effects of PA, we briefly review the standard mechanism by
which a trapped-ion crystal with N ions can be made to simu-
late the quantum Ising model [2],

Ĥ = ~
1
N

∑
i< j

Ji jσ̂
z
i σ̂

z
j. (2)

Here, σ̂z
i is the z-Pauli matrix for the ith ion, with the spin

degree of freedom realized by two long-lived states.
In the Lamb-Dicke regime [25], the Hamiltonian describing

an SDF oscillating at frequency µ and with peak force F can
be written in a frame rotating at µ as [26, 27]

ĤSDF = ~
N∑

m=1

(
fm

(
âm + â†m

) N∑
i=1

Ui,mσ̂
z
i − δmâ†mâm

)
+ ĤCR. (3)

Here, fm ∝ Fz0m is the coupling strength of the SDF to the mth
collective motional mode, with z0m ≡

√
~/2Mωm the charac-

teristic length scale of that mode, ωm its frequency, and M the
ion mass. The Ui,m are matrix elements of the normal mode
transformation matrix [28], and δm ≡ µ − ωm. The counterro-
tating Hamiltonian ĤCR [25] can often be justifiably neglected
in the rotating wave approximation (RWA).

There are two situations in which Eq. (3) reduces approx-
imately to Eq. (2). If all of the modes are far off resonance
(δm � fm), they can be eliminated adiabatically to give the
effective spin-spin interaction in Eq. (2) [25, 29, 30]. Al-
ternatively, even if fm & δm for a single mode, as long as
all other modes are far off resonance then the spin state ap-
proximately disentangles from the motional state at times that
are integer multiples of 2π/δm. At these times the spin state
evolution is the same as that given by Eq. (2), with Ji j ∝

Ui,mU j,m× (N f 2
m/δm). For example, if µ is detuned close to the

center of mass (c.o.m.) mode (m = 1), then Ji j = J ≡ 2 f 2
1 /δ1,

describing all-to-all interactions. (In what follows, we will
drop the explicit subscripts on f and δ when discussing a sin-
gle mode.)

To understand the dependence of the geometric phase on
the system parameters, we can consider the phase Φ acquired
by a single spin for simplicity. There is some freedom in how
Φ is generated, namely the phonon trajectory can undergo any
integer number of loops, each contributing 4π( f /δ)2 to Φ and
taking a time 2π/δ. At fixed f , reducing δ decreases the time t
required to generate Φ, but δ can only be reduced to the point
where Φ = 4π( f /δ)2 because at least one loop must close. At
this point, δmin = f /

√
Φ/4π, giving tmin = 2π/δmin ∝

√
Φ/ f

as asserted above Eq. (1). In experiments that employ opti-
cal dipole forces to generate the SDF, the dominant decoher-
ence source can be scattering from the laser beams that oc-
curs at a rate Γ ∝ f [12, 27]. In such cases, preparation of a
particular entangled spin state (corresponding to a particular
Φ) is accompanied by the minimal accumulated decoherence
Γtmin ∝

√
Φ.

Parametric Amplification.—We now consider what hap-
pens when the ion motion is parametrically amplified while
simultaneously being driven by the SDF. If the PA is at twice
the SDF frequency, then in a frame rotating at µ the PA Hamil-
tonian is [17, 25]

ĤPA =
∑

m

~gm cos (2µt − θ)
(
âmeiµt + â†me−iµt

)2
. (4)

Here gm = eV/(Mωmd2
T ), with V the parametric drive voltage

amplitude and dT a characteristic trap dimension. Typically
gm depends weakly on m, and for simplicity we ignore the
m-dependence in what follows. Values of g as large as 0.1 ×
ω1 appear feasible, in particular for traps with small dT . The
relative phase θ between the PA and SDF can in principle be
chosen at will. We assume θ = 0, which is optimal; limitations
imposed by fluctuations of θ have been carefully analyzed and
are discussed later.

At first inspection, evolution under both ĤSDF and ĤPA
seems complicated. ĤPA squeezes the motional state, while
ĤSDF entangles the spin and squeezed motional states in a
complicated way. However, under the condition 0 < g < δm

[31], each mode will still undergo a closed loop in phase
space [32], returning to the initial unsqueezed motional state
and disentangling from the spin state at integer multiples of
2π/(δ′m), with δ′m ≡

√
δ2

m − g2. The total Hamiltonian can be
written in a simple form by using a Bogoliubov transforma-
tion b̂m = cosh rmâm − sinh rmâ†m, with rm = − log Sm and
Sm = [(δm − g) / (δm + g)]1/4 [19]. In terms of these trans-
formed operators, ĤT = ĤSDF + ĤPA is given by

ĤT = ~
N∑

m=1

(
f ′m

(
b̂m + b̂†m

) N∑
i=1

Ui,mσ̂
z
i − δ

′
mb̂†mb̂m

)
+ ĤCR, (5)

where f ′m = fm/Sm and ĤCR now contains the counterrotat-
ing terms from both ĤSDF and ĤPA [25]. Therefore, we ob-
tain a Hamiltonian that is identical (in the RWA) to ĤSDF but
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TABLE I. Rescaling of key quantities under PA.

Φ τ αm

SDF only 4π( f /δ)2 2π/δ 2 f /δm

SDF+PA 4π( f /δ)2/(4S 6) (2π/δ)/(2S 2) 2 f /(δm − g)

with rescaled drive strengths and detunings. Although every
mode is squeezed by PA, a single mode (we assume the c.o.m.
mode) will dominate the dynamics if δ − g � δm,1 − g. Table
I shows both the geometric phase Φ and duration τ of a single
loop for the c.o.m. mode, along with the typical phase-space
amplitudes αm of the other modes, in the limit that δ−g � δ+g
(such that δ′ ≈ 2δS 2). Note that δm − g is bounded by the
gap between the c.o.m mode and its closest neighbor, so that
residual displacements αm of the spectator modes are upper-
bounded as 1/S increases [25].

As argued above, without PA the fastest strategy for ob-
taining a particular geometric phase Φ at fixed f is to choose
δ such that the c.o.m. mode undergoes a single loop, giving
tmin ∝

√
Φ/ f . With PA, we can similarly argue that the opti-

mal strategy to obtain Φ at fixed f and S is to choose δ such
that a single loop is closed. Solving Φ = 4π( f /δmin)2/(4S 6)
for δmin [and using tmin = (2π/δmin)/(2S 2)] gives tmin ∝

S
√

Φ/ f , as claimed in Eq. (1). Thus we can generate the
same spin state faster at fixed laser power or fixed current by
reducing S , which serves as a figure of merit for the bene-
fits of PA. Physically, PA squeezes the phase space loops into
ellipses (see Fig. 1), which enclose more area (per unit time)
for a fixed SDF. For the important situation where the SDF is
generated by optical dipole forces and the decoherence rate Γ

scales with the laser intensity, the accumulated decoherence
can now be written as

Γtmin ∝ S
√

Φ, (6)

indicating that in principle the effect of decoherence in gener-
ating a particular entangled spin state can be made arbitrarily
small. In practice there will be limits on S , for example, due
to the breakdown of the RWA (see Fig. 4). For the illustrations
that follow, all results based on the RWA have been verified by
numerically solving for the dynamics of ĤT . In cases where
the RWA is borderline, we then determine the reduction of
the product f tmin for fixed Φ numerically [33], and report this
reduction as the effective degree of squeezing Seff .

Improving Quantum Spin Squeezing.—As an exemplary
application of PA, we show how it improves quantum spin
squeezing (QSS). QSS characterizes the reduction of spin
noise in a collective spin system, and is important for both en-
tanglement detection [34] and precision metrology [35]. Here
we investigate the Ramsey squeezing parameter ξR [36]; for
coherent spin states, ξ2

R = 1, while for spin squeezed states
ξ2

R < 1[35].
A simple way to realize QSS is via single-axis twisting [37],

for which the ideal minimal squeezing parameter scales as
N−2/3 for N � 1 [35, 37]. This limit is very challenging

N=100
N=200
N=400

1 2 3 4 5 6
-15
-14
-13
-12
-11
-10
-9
-8

1/ηT

Γ=0.08 J
Γ=0
ηT≃0.56
ηT=0.25
50 100 200 500

-16
-14
-12
-10
-8
-6

N

ξ R2
(d
B
)

(a) (b)

Se↵

Se↵

1/Se↵

FIG. 2. (Color online). Minimal squeezing ξ2
R plotted (a) as a func-

tion of N for various situations; (b) versus 1/Seff for several values of
N, with shaded strips indicating the expected degredation of squeez-
ing due to a phase uncertainty of σθ = 180.

to achieve for large N. In fact, for decoherence attributable
to spontaneous spin flips in the Ising (z) basis at a rate Γ

[12, 38], ξR actually saturates for large N to the asymptotic
value 3[Γ/(2J)]2/3 [25, 39], with the saturation taking place
when N � 2J/Γ. To improve spin squeezing, the ratio J/Γ
must be improved, which can be achieved via PA. To bench-
mark potential improvements, we analyze the effects of PA
quantitatively under the experimental conditions in Ref. [7].
In Fig. 2(a), we plot the optimal spin squeezing as a func-
tion of N. The two outer lines represent SDF-only cases with
(solid line) and without (dashed line) decoherence [40]. The
two intermediate lines show how the decoherence-free results
are approached as Seff is decreased. Figure 2(b) is similar to
Fig. 2(a), but shows ξ2

R as a function of 1/Seff for different N.
High Fidelity Two-Qubit Gate.—Two-qubit gates with fi-

delity higher than 99.9% have recently been demonstrated in
two-ion systems [4, 5], where the largest remaining error is
due to spontaneous emission from the driving lasers. Since a
gate operation corresponds to some fixed Φ, Eq. (6) implies
that the effective spontaneous emission rate can be reduced by
a factor of S for a fixed gate time.

In many-ion systems, the gate time must be much longer
than the inverse of the motional mode splitting in order to
suppress gate errors due to spin-phonon entanglement with
off-resonant modes [14]. If the gate time is reduced by using
more laser power, then off-resonant modes experience larger
phase space excursions (αm ∝ f ) and the fidelity suffers. By
using PA, the gate time (τ) and the off-resonant loop size (αm)
are independent, and we can hold the gate time fixed while
decreasing αm by a factor of S . For example, comparing
with the latest modulated pulsed laser scheme [16] that used
f /2π = 10 kHz for a two-qubit gate in a 5-ion chain, we
calculate that our scheme can implement the same task with a
comparable gate time (τ ∼ 180 µs) and fidelity ≥ 99.5% using
significantly less laser power (see Fig. 3) for the same trap fre-
quency (ω1/2π = 3.045 MHz). As shown in Fig. 3, the fidelity
can be improved by tuning g to minimize the total residual
displacements [25]. With the access to larger g ∼ 2π × 100
kHz, PA could enable a much faster two-qubit gate (∼ 30 µs)
with high fidelity using moderate laser power ( f /2π ∼ 9 kHz).

Limitations.—Our analytical results have been simplified
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FIG. 3. Two-qubit gate fidelity in a 5−ion system, calculated from
a numerical simulation of the full Hamiltonian ĤT. The optimal fi-
delity with (orange triangles) and without (blue dots) timing error
(1%) as a function of the PA strength g for a gate time τ ∼ 180 µs.
The purple squares correspond to the reduction of the laser power ( f )
as the PA strength is increased.

by dropping ĤCR in Eq. (5). However, when the RWA breaks
down the enhancement due to PA can no longer be understood
simply in terms of the quadrature squeezing S . Energy shifts
of the Bogoliubov modes due to ĤCR can be calculated in
second-order perturbation theory as ∆δ′m = (gm/Sm)2/(4µ),
and can be ignored as long as ∆δ′m � δ′m [25], providing a
necessary condition for the validity of the RWA. To assess
the validity of the RWA more quantitatively, we compare S
with the effective degree of squeezing Seff . In Fig. 4, we plot
both 1/S 2

eff
and 1/S 2 as a function of g for different values

of the time τ for a single-loop gate with ω1/2π = 3.045 MHz.
As expected, we observe that they agree very well for small
enhancement, deviating appreciably only once ∆δ′m = δ′m/2
(dot-dashed region). Note that the maximum achievable
enhancement increases with increasing τ. The above analysis
may have implications for the limitations of PA in other
systems [19].

The primary technical concerns in implementing PA exper-
imentally are likely to be the uncertainty in the relative phase
θ between the SDF and the PA, shot-to-shot frequency fluctu-
ations of δ, and imperfect control of the interaction time. Con-
trolling the phase of an optical-dipole force has been demon-
strated [41] but can be challenging. Nonzero θ does not affect
the period of a single loop, but it does reduce the geomet-
ric phase Φ enclosed by that loop, and therefore reduces the
resulting spin-spin interaction strength J. However, we can
show that J depends on θ only to second order. For both spin
squeezing and two-qubit gates, the figures of merit (squeezing
amount and gate fidelity, respectively) scale quadratically with
the shift of J around its maximal (θ = 0) value [25], and there-
fore depend only quartically on θ. Modeling the phase as a
zero-mean Gaussian random number with standard deviation
σθ, in Fig. 2(c) we show the expected standard deviation in ξ2

R
for σθ = 180. Fluctuations of δ (due to fluctuations of either µ
or ωm) affect the gate fidelity quadratically by modifying the
Bogoliubov frequencies δ′m [25]. For the simulation shown
in Fig. 3, we estimate that fidelity > 99% is still possible with
shot-to-shot frequency fluctuations of 0.2 kHz. Imperfect tim-
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FIG. 4. Break-down of the rotating wave approximation. The
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dotted region (red-shaded) corresponds to ∆δ′m ≥ δ

′
m/20 and the dot-

dashed region (blue-shaded) corresponds to ∆δ′m ≥ δ
′
m/2.

ing control has a similar effect as fluctuations in δ on the de-
gree of spin squeezing and the fidelity of two-qubit gates. In
Fig. 3 we show that a 1% timing error [4], reduces the gate fi-
delity by about 0.3% in the 5-ion system studied. Finally, we
note that in the RWA, ĤT (Eq. (5)) and ĤSDF (Eq. (3)) have
the same form, implying that the enhancements of PA are in-
sensitive to the temperature of the initial motional state [42]
in the Lamb-Dicke regime.

Outlook.— To be concrete we have focused on spin squeez-
ing and two-qubit gates, but the techniques described here are
likely to have numerous other applications. For example, it
should be possible to enhance the creation of deeply over-
squeezed (non-Gaussian) spin states, and it may also be pos-
sible to improve amplitude sensing of mechanical displace-
ments [43]. Our strategy is not exclusive of other tools in
the trapped-ion toolbox; for example, it may be possible to
use PA in conjunction with dynamical controls over the driv-
ing laser to further suppress unwanted spin-motion entangle-
ment in two-qubit gates. Similar to time-dependent control
schemes [14–16], we can also utilize stroboscopic parametric
driving protocols to optimize the amplification of spin-spin in-
teractions. For example, stroboscopic protocols consisting of
alternating applications of a resonant SDF and a resonant PA
with large g can potentially increase the enhancement factor
limits from the RWA breakdown.
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