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We introduce a novel minimally-disturbing method for sub-nK thermometry in a Bose-Einstein condensate
(BEC). Our technique is based on the Bose-polaron model; namely, an impurity embedded in the BEC acts as the
thermometer. We propose to detect temperature fluctuations from measurements of the position and momentum
of the impurity. Crucially, these cause minimal back-action on the BEC and hence, realize a non-demolition
temperature measurement. Following the paradigm of the emerging field of quantum thermometry, we combine
tools from quantum parameter estimation and the theory of open quantum systems to solve the problem in
full generality. We thus avoid any simplification, such as demanding thermalization of the impurity atoms,
or imposing weak dissipative interactions with the BEC. Our method is illustrated with realistic experimental
parameters common in many labs, thus showing that it can compete with state-of-the-art destructive techniques,
even when the estimates are built from the outcomes of accessible (sub-optimal) quadrature measurements.

Introduction— The ongoing efforts in the development of
quantum technologies is strongly fuelled by their many an-
ticipated practical applications [1]. In the process, we are
already benefiting from striking experimental advances and
much deeper theoretical insights. In particular, ultracold
atomic gases are a key platform for quantum technologies due
to their potential for quantum simulation [2, 3]. Nonetheless,
operating a quantum simulator requires very precise tuning
of the parameters of the experiment, so as to ensure that the
simulated system behaves as intended. In particular, a precise
temperature control is essential, for instance, for the recon-
struction of the equation of state of the system [4].

In current experimental setups, the main thermometric tech-
niques are based on time-of-flight measurements either di-
rectly on the BEC [5-7], or on impurities embedded in it
[8, 9]. In the former case, temperatures of few nK, or even
sub-nK might be estimated efficiently, although at the price of
destroying the BEC. On the contrary, the latter protocols are
less destructive, albeit efficient at relatively “large” tempera-
tures of ~ 100 nK. Interestingly, recent proposals have dis-
cussed minimally disturbing interferometric setups in which
the temperature is mapped onto a relative phase on a probe
[10-12], however, the underlying models are very simple.

An effective non-demolition thermometric technique in the
sub-nK regime is thus still missing. Any such strategy should
be build upon a comprehensive theoretical description and
be capable of informing the choice of the most sensitive
temperature-dependent quantities to be measured. Here, we
propose what is, to the best of our knowledge, the first experi-
mentally feasible quantum non-demolition technique to mea-
sure the temperature of a BEC in the sub-nK domain. It is
based on the Bose polaron problem, i.e., interrogation of an
impurity that is embedded in the condensate, while causing
minimal disturbance to the cold atomic gas. The impurity

problem has been intensively studied in the context of polaron
physics in strongly-interacting Fermi [13-21] or Bose gases
[22-30], as well as in solid state physics [31-33], and mathe-
matical physics [34—38]. We specifically avoid any unjustified
simplifications—such as complete thermalization of the impu-
rities at the BEC temperature—and investigate the problem in
its full generality. The usefulness of our proposed technique
is finally illustrated with typical experimental parameters.

In our analysis, we benefit from the toolbox of the emergent
field of quantum thermometry [39], which combines quantum
estimation theory and the theory of open quantum systems.
This will allow us to compare the ultimate precision bounds
on temperature estimation with the thermal sensitivity of
concrete experimentally feasible measurements.

The model— Let us consider an impurity of mass my (act-
ing as the temperature probe) embedded in a BEC of atoms
of mass mp, chemical potential y, and interatomic coupling
strength gg. The condensate (which makes up the sample),
is confined in a one-dimensional harmonic well of frequency
ws, leading to a parabolic Thomas-Fermi potential with ra-
dius R = 1/2;1/m13a)]23.
harmonic potential of frequency Q. Finally, the interspecies
coupling (i.e., the probe-sample interaction) is denoted by gp.
Our aim is to estimate the temperature 7 of the BEC as pre-
cisely as possible, while diminishing the ensuing disturbance.
We note that the global probe-sample Hamiltonian can be
thought-of as a quantum Brownian motion model consisting
of the following contributions:
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= — 4+ —
m 2

Here, I:II stands for the free Hamiltonian of the impurity, while



the term Hp represents the BEC and encompasses all the in-
teracting modes of the atomic gas. Finally, Hiy is the interac-
tion between the impurity and the gas. In the second line of
Eq. (1), however, we express the BEC degrees of freedom in
terms of the operators Ek and l;T, that stand for the annihila-
tion and creation operators of a Bogoliubov mode with energy
Ej). This new representation is nothing but the result of a stan-
dard Bogoliubov transformation, which diagonalizes Hp and
maps it into a non-interacting form. The details of mapping
the original Hamiltonian to that of quantum Brownian motion
in Eq. (1) can be found in [26, 30, 40, 41]; we also provide a
sketch of this in the supplemental material.

In this picture, the last term in the second line of (1) ac-
counts for the interactions between the impurity and the Bo-
goliubov modes. The interaction strength between the kth Bo-
goliubov mode and the impurity is given by gi, (see [30] for
details). Note that such interactions exhibit, in general, a non-
linear dependence on the position of the impurity. The linear
form presented in Eq. (1) is valid only near the center of the
confining potential of the BEC, i.e., when x/R <« 1. Of course,
this leads to constraints on the values of the system parame-
ters that have been discussed in [30]. We underline that the
values of the physical quantities considered in the following
fulfill the conditions associated to the linear approximation in
the interaction Hamiltonian.

In general, the spectrum of a Hamiltonian like A may not
be bounded from below [42—44]. To rule out this eventuality,
it is common practice to shift the frequency of the Brownian
particle as Q% > Q% = Q% +2 3, gi / w,% to compensate for the
distortion caused by the coupling to the bath [45, 46]. Here,
however, we will avoid adding any terms “by hand”, since
Eq. (1) has been consistently derived from first principles [30].
Instead, we will limit ourselves to choose parameters which
fulfill the conditions described in [30] that guarantee the pos-
itivity of the spectra.

Treating the impurity as a Brownian particle coupled to
a bath of Bogoliubov modes, allows us to exploit well-
established techniques from the theory of open quantum sys-
tems. Specifically, the motion of the probe is described exactly
by the second-order differential equation [44]
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This is the quantum counterpart of the Langevin equation, in-
troduced in 1909 for (classical) Brownian motion [47, 48].
The term B(7) on the right-hand side of Eq. (2) reads
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and plays the role of a stochastic driving force. Memory ef-
fects enter in the dynamics through the damping kernel
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where J(w) = Y120 hgié((u — wy) is the spectral density. For
our model, this is given by

o
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where y = (2gg/mwpR®) X (nu/hwp)* and n = gz /gs [30].
The Heaviside function ®(-) introduces an ultraviolet cutoff,
which regularizes the diverging high-frequency behavior. Im-
portantly, the long-time dynamics of the impurity—our main
focus—does not depend on the details of the cutoff [26] but
rather, on the low frequency behaviour of J(w). This is dic-
tated by the exponent of w in the pre-factor of Eq. (5)—i.e.,
the “Ohmicity” parameter [45].

Eq. (2) can be solved via Laplace transform (that is,
Lf(H] = fooo dte™ " f(1)). In particular, the steady-state vari-
ances in position and momentum are given by
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where (---) denotes steady-state averaging and y”’(w) stands
for the response function that reads as
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Here, { (w) and 0 (w) are, respectively, the real and imaginary
parts of Lz [I'(r)] evaluated at Z = —iw + 0*. When it comes
to the position-momentum correlation, this is evaluated to
zero in our case, i.e., {{x,p}) = 0. Note, however, that for
more general impurity—-BEC couplings, it might be neces-
sary to explicitly evaluate the off-diagonal element ({x, p}).
Therefore, Eqs. (4)—(7), allow to determine the steady-state
covariance matrix of the impurity as a function of the system
parameters—in particular, the temperature of the BEC and the
dissipation strength y [45]. Recall that, since the Hamiltonian
(1) is quadratic in the quadratures, Egs. (6) fully characterize
the steady state of the impurity (together with (X) = (p) = 0).

Thermometric performance— The inherent errors from quan-
tum measurements give rise to statistical uncertainty on the
temperature estimate. Quantum estimation theory allows us to
place fundamental limits on the “error bars” of the final tem-
perature reading, and even to rank the various temperature-
dependent properties of the probe according to their thermal
sensitivity. For instance, let us build our temperature estimate
from a large set of v outcomes of independent measurements
of some impurity observable O [49]. We stress that these
are either measurements performed on independent impurity
atoms, or measurements on the same probe, but paced so that
the BEC-impurity composite has time to reset to its station-
ary state every time. By mere propagation of errors, the un-
certainty of the temperature inferred from such dataset would



read [50, 51]
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where A20 = (0?) — (O)? stands for the variance of O cal-
culated on the stationary marginal of the impurity o1(7T), and
)(T(O) = Ogtr[01(8) 0]§:T represents its (static) temperature
susceptibility.

In order to assess the performance of 0, it is essential
to know which is the minimum possible uncertainty (i.e.,
(0T )min = inf 6T(0)). To this end, we introduce the sym-
metric logarithmic derivative (SLD) A7, implicitly defined as

5T(0) = (8
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Coming back to the definition of XT(O), we notice that
x7(0) = 3(O A7 + Ar Oy — (OX(Ar), while y7(A7) = A’Ar.
Making use of the fact that AO Af\T > XT(O) allows to turn
Eq. (8) into

1
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where we have introduced the quantum Fisher information
(QF) F(T) = A%A7. Eq. (10) is nothing but the quantum
Cramér-Rao bound [51], and sets the ultimate lower limit
on the statistical error. Furthermore, by simply replacing
0 by Ar in (8), we can see that this bound is saturated
by performing complete projective measurements onto the
eigenbasis of the SLD.

Results— Owing to the simplified Hamiltonian in Eq. (1) we
can write the SLD and the QFI for temperature estimation
solely in terms of the variances in Egs. (6) [45, 52], i.e.,

Ar = Cx(# () +C, (1~ 7). (11a)
F(T)=2C3(&2Y +2Co(p*)* 1> C C), (11b)
where the coefficient C, is given by
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and C, can be obtained by simply exchanging % and p. That
is, by repeatedly measuring the observable (11a) on the im-
purity, the temperature of the BEC can be estimated with the
minimum possible uncertainty. We are now in the position to
plug in realistic numbers into the exact steady-state marginal
for the probe and explore the thermal sensitivity of our non-
demolition thermometric protocol at ultra-low temperatures.
As an illustrative example, we will work with a BEC of
K atoms containing Yb impurities. The qualitative picture
would remain essentially unaltered regardless of the atomic
species considered. In Fig. 1, we plot the optimal relative
error AV (ST )min/T = (T \/7'TT)_1 for various probe-sample
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FIG. 1. (color online) (black) Optimal relative error (67 )min/T
(v =1) as a function of the temperature of the BEC in a logarithmic
scale. Specifically, we work with impurities of Yb in a sea of ultra-
cold K. The temperature range for the BEC is 200pK < 7' < 2nK.
The trapping frequency of the gas (with N = 5000 atoms) was set
to wg = 27 x 100Hz, while Q = 27 x 10Hz (g/mp = 3 X 1073 Tm).
Different probe-sample coupling ratios n = gig/gp were considered,
namely (solid) n = 1, (dashed) n = 3, and (dotted) n = 6. For com-
parison, we also depicted the relative error of a fully thermalized
impurity (i.e., 7 — 0) (dot-dashed red). Note that, for 7 = 1, the rela-
tive error can be kept below ~ 14% from only v ~ 100 measurements.
This is quantitatively close to state-of-the-art destructive experimen-
tal techniques. See text for discussion.

coupling strengths and temperatures ranging from 200pK to
2nK. Specifically, keeping the interatomic and interspecies
couplings comparable (i.e., n = 1) would allow to achieve a
relative error below 14% from as few as 100 measurement
outcomes. That is, polaron thermometry outperforms the in-
terferometric technique proposed in Ref. [12] by an order of
magnitude. More importantly, unlike state-of-the-art experi-
mental methods (e.g., [5-8, 53]), ours is non-destructive.

We note, however, that the stronger the probe sample inter-
action, the worse the estimation. Likewise, it can be clearly
seen that, for strong dissipation, the impurity deviates signif-
icantly from a thermal state at the temperature of the sam-
ple. The first observation seems to be in striking contradiction
with the main results of [45], where a substantial dissipation-
driven enhancement was reported at low temperatures. Note
however, that the temperature range considered in Fig. 1 does
not qualify as “low”, according to the criteria of Ref. [45],
namely T < hiwg/kp (here, T ~ hiwp/kp). When it comes to
the second observation, it is worth highlighting that the di-
vergence between the exact steady state of the impurity and a
fully thermalised probe can be sizeable in the pK range. This
only comes to reinforce the idea that simple dissipation mod-
els, such as a Gorini-Kossakowski-Lindblad-Sudarshan mas-
ter equation [54, 55] are not suitable for this type of analysis.

Recall that the above discussion assumes that the optimal
measurement of Eq. (11a) can be implemented. In practice,
however, such a mixture of covariances with temperature-
dependent coefficients might be difficult to realize; the bare
quadratures (#2) or ( [72> being easier to measure. The relative
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FIG. 2. (color online) (dashed blue) Relative error for the position quadrature ST(£%)/T and (dotted red) the momentum quadrature 6T(ﬁ2)/ T
as a function of T for (left panel) 7 = 1 and (right panel) n = 6. All parameters are the same as in Fig. 1. The minimum relative error (solid
black) is superimposed for reference. Even though both measurement schemes are sub-optimal, they still might allow to draw estimates with
relative errors as low as 18% for v ~ 400. Note that for 7 > 0.5 nK and by using the same data size v = 400, one can achieve a relative error

below 10%.

error of estimates based on these is benchmarked against the
ultimate lower bound in Figs. 2. Note that, at = 1, (*) and
(p?) perform similarly, while at stronger coupling, the po-
sition quadrature becomes a significantly better temperature
estimator. Also, under stronger dissipation, (£?) gets closer
to the optimal setting. Importantly, our approach remains
practically useful regardless of the strict sub-optimality of
fcz—temperature estimates with 6T(£%)/T < 18% (or in the
domain T > 0.5 nK, with 67(%?)/T < 10%) can still be
constructed from relatively small datasets of v ~ 400.

Conclusions— We have shown that impurities immersed in a
BEC can be exploited as temperature sensors. The key fea-
tures of such thermometric scheme are that (i) the tempera-
ture is estimated by monitoring the impurity atoms only—the
BEC itself does not need to be measured destructively, (ii) it
can compete with state-of-the-art thermometric techniques in
the sub-nK range, and (iii) the underlying analysis does not
assume thermalization of the impurity at the temperature of
the BEC, but rather takes fully into account the strong corre-
lations built up between probe and sample.

In particular, we considered a cold atomic gas and an im-
purity both harmonically confined in 1D at different trapping
frequencies. Assuming that the impurity remains localised
around the minimum of the potential, allowed us to “linearize”
the model. We obtained the exact stationary state of the im-
purity from the corresponding quantum Langevin equation
and, using standard tools from quantum estimation theory,
we could eventually calculate the minimum possible statisti-
cal uncertainty for a temperature measurement. In particular,
owing to our analysis being exact, we could verify that the
usual assumption of full thermalization for the impurity at the
temperature of the sample overestimates the performance of
the scheme for typical parameters in the pK-nK range.

We showed that, with only 100 measurements, the rela-
tive error can be kept below 14% for temperatures as low

as 200pK. Importantly, we could also show that feasi-
ble sub-optimal quadrature measurements—specifically, 22—
allow for similar performances with limited resources (i.e.,
datasets of just few hundreds of independent measurements).
Interestingly, we found that increasing the probe-sample cou-
pling does not improve the sensitivity of the protocol in the
temperature range under study due to the comparatively low
typical trapping frequencies (60—70 Hz).

Even though we illustrate our results with Yb impurities in
a cold gas of K atoms, our approach is completely general
and could be straightforwardly applied without limitations to
other atomic species and temperature ranges. Similar results
are also expected in the 2D and 3D cases. In particular, such
an extension is straightforward for homogeneous BECs, the
same position squeezing effects giving rise to the enhanced
sensitivity of £2 are known to occur [26]; the main difference
would be a larger Ohmicity in Eq. (5).

In order to bring these promising quantum non-demolition
thermometers a step closer to experimental demonstra-
tions, it would be interesting to study how the unavoidable
non-linearities could affect our results. Exploring whether
the entanglement between two impurities embedded in
the BEC—recently studied in [56]—can be used to boost
thermometric performance also remains an open challenge.
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