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We experimentally characterize heterogeneous nonexponential relaxation in bidisperse supercooled
colloidal liquids utilizing a recent concept called “softness” [Phys. Rev. Lett. 114, 108001(2015)].
Particle trajectory and structure data enable classification of particles into subgroups with different
local environments and propensities to hop. We determine residence times, tR, between particle hops
and show that tR derived from particles in the same softness subgroup are exponentially distributed.
Using the mean residence time t̄R for each softness subgroup, and a Kramers’ reaction rate model,
we estimate the activation energy barriers, Eb, for particle hops, and show that both t̄R and Eb

are monotonic functions of softness. Finally, we derive information about the combinations of large
and small particle neighbors that determine particle softness, and we explicitly show that multiple
exponential relaxation channels in the supercooled liquid give rise to its non-exponential behavior.

When a liquid is cooled rapidly past a characteris-
tic onset temperature, its dynamics become increasingly
slow, non-exponential and inhomogeneous [1–5]; this is
the glass transition. In crystalline systems, successful
theories of dynamics have been developed based on struc-
tural topological defects. The prospect of an analogous
approach to glassy dynamics, premised on structural het-
erogeneities, is therefore appealing. For many years, how-
ever, no structural order parameter predictive of dynam-
ics was identified, and until recently, it has remained un-
clear whether a structure/dynamics connection exists at
all [6–16].

Very recent studies have shown that data from molecu-
lar dynamics simulations or experiments can be analyzed
with machine learning methods to infer a structural order
parameter for dynamics in supercooled liquids and disor-
dered solids called “softness” [17–23]. An analysis based
on softness was applied to supercooled liquids, and was
shown to simplify conceptual understanding of phenom-
ena such as heterogeneous dynamics and non-exponential
relaxation [18], history dependence during aging [19] and
dynamics in thin films [20]. Despite these successes, the
application of softness to supercooled liquids has been
limited to date to simulations. Besides imaging and sta-
tistical challenges, the chief hurdle in applying the analy-
sis to experiments is that the approach has required data
taken at many different temperatures to infer the many
Arrhenius relaxation processes that coexist in the system.

In this Letter we apply the softness concept to exper-
imental supercooled liquids. We corroborate the results
in [18] and show directly that structure-dependent en-
ergy barriers may be ascertained from a thermal super-
cooled colloidal liquid at a single temperature. We then
leverage the heterogeneous distribution of energy barri-
ers to demonstrate that it explains non-exponential re-
laxation observed in the sample [24–27]. To avoid taking
data at multiple temperatures, we determine the resi-
dence times between successive rearrangements of indi-
vidual particles and show that the residence time dis-

tribution, conditioned on softness, is exponential with
a timescale that is monotonic in the softness; multi-
ple thermal activations characterized by the same decay
time are associated with particles of same softness. We
use the measured individual exponential residence times
to derive the distribution of residence times of the en-
tire system; this calculated system distribution is non-
exponential and agrees well with experiment. Therefore,
relaxation in our supercooled colloidal liquid is not in-
trinsically non-exponential [26, 27]. Together, the mea-
surements of relaxation time, softness, and energy-basin
shape from particle trajectories in a single sample at fixed

temperature and density, along with a Kramers reaction
rate model [28–31], enable us to derive a distribution of
effective free energy activation barriers in the supercooled
colloidal liquid.

Finally, we investigate the connection between softness
and local structure. We show that in bidisperse colloidal
supercooled liquids, softer particles tend to have fewer
nearby large particles. Our results demonstrate a direct
connection between the local structural environment of
a particle, its dynamics, and the energy barriers it must
overcome to rearrange. The experiments show explicitly
that the combination of exponential processes that leads
to non-exponential relaxation in our glassy colloidal liq-
uid has its origin in structural heterogeneity at the par-
ticle scale.

We study aqueous experimental samples [see Supple-
mental Material (SM) [32]] composed of a monolayer
of poly(N-isopropylacrylamide) (PNIPAM) hydrogel mi-
crospheres [33] sandwiched between two cover glasses.
Observations are carried out by bright-field video mi-
croscopy (Leica DMR) with a 100× oil-immersion lens.
The video is recorded by a CCD camera (UNIQ 900DS)
at 10 frames per second with a resolution of 1392×1036
and 256 gray scale. We utilize Trackpy [34, 35] to track
particle trajectories. The sample temperature is main-
tained at 28 ◦C by an objective heater (BiOptechs). The
viewing area contains Nl ≃ 3800 large and Ns ≃ 4200
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FIG. 1. (color online) P (tR) measured for large particles. Er-
ror bars indicate standard deviations. The red dashed line
is the stretched exponential fit P (tR) ∼ exp[−(tR/220)

0.85 ].
The black solid line is calculated from Eq. (3). The blue dash-
dot line is the exponential fit P (tR) ∼ exp[−(tR/300)]. Inset
(right): the relative residuals of both fits. The residual plot
is cut off at 2000 seconds; points at longer times exhibit even
greater disagreement with the exponential fit, but obscure
early-time data which have excellent signal-to-noise. Residu-
als are fit with quadratic functions as guides for the eye. In-
set (right) shows a trajectory (black) of particle displacement,
∆ri(t) ≡ |~ri(t)−~ri(0)|, relative to an arbitrary reference time
t = 0. Here, displacement is scaled by large particle diameter,
σ. phop,i is calculated from the same trajectory.

small particles [l (s) represents large (small) particles].
The diameters, σ = 1.2µm and σ′ = 0.9µm, of the large
and small species, respectively, are obtained from the first
peaks of the radial distribution functions, gll(r) and gss(r).
The packing fraction π[Nl(σ/2)

2+Ns(σ
′/2)2]/A (A is the

area of field) is calculated to be 0.84.
Particle displacement trajectories are characterized by

many intermittent jumps, rather than the more con-
tinuous random walks found in liquids. A typical dis-
placement, ∆ri(t) ≡ |~ri(t) − ~ri(0)|, of the i-th particle
is shown in Fig. 1, right inset. This motion exhibits
idle periods separated by short-time hop-like relocations.
To quantify these intermittent dynamics, we compute
the particle “hop” function [18, 36, 37], phop,i(t) =
[
〈

(~ri − 〈~ri〉B)
2
〉

A

〈

(~ri − 〈~ri〉A)
2
〉

B
]1/2; here the angular

brackets 〈...〉A and 〈...〉B denote an average over the time
windows A ≡ [t − δt/2, t] and B ≡ [t, t + δt/2], respec-
tively. We choose the hop duration parameter δt = 8s
(SM [32]). Notice, phop,i(t) remains close to zero except
when the particle hops to a new position; then phop,i(t)
exhibits a large peak (Fig. 1 inset).
Intermittency in particle trajectories is characterized

by a residence time parameter, tR, defined as the sep-
aration between successive phop,i peaks. To derive tR
from the phop,i trajectory, we choose the threshold value
phop,c/σ

2 = 0.002 (SM [32]) to distinguish local vibra-
tional motion from hops. The probability distribution
function (PDF), P (tR), measured from all phop,i is shown
in Fig. 1. The excess in distribution events at the shortest

times (tR < 200s) is due to the crossover of large vibra-
tional fluctuations and small hops. The longer-time dis-
tribution (tR > 200s) is well fit by the stretched exponen-
tial function, P̃ (tR) ∼ exp[−(tR/τ)

β ], with τ = 220± 37
and β = 0.85 ± 0.04 (see Fig. 1). Note, dynamic light
scattering measurements of hydrogel-particle glass for-
mers found similar β; smaller β were reported in more
fragile hard-sphere glass formers [38]. Fitting P (tR) with
exponential form (i.e., P̃ (tR) with β = 1) was also tested
and found to be quantitatively worse, based on residuals,
[P (tR)− ˜P (tR)]/P (tR) (Fig. 1) and chi-square errors (SM
[32]). Since hopping time statistics are directly related
to dynamical correlation functions [39–41], the stretched
exponential P (tR) reflects complex relaxation in the su-
percooled regime that can arise when thermal activations
involve a range of energy barriers. Though many ex-
planations exist for the non-exponential process [26, 27],
early work [24, 25] and recent simulations [18–20] sug-
gest they arise when thermal activations involve a range
of energy barriers.
Incorporation of the softness concept enables use of

P (tR) to understand the microscopic energy landscape
in a deeper way. To this end, we follow Refs. [17, 18] and
describe the local structure near the i-th particle using
the following radial density function:

GX
i (µ) =

∑

j 6=i

exp[−(
Rij − µ

0.1σ
)2]. (1)

Here Rij is the distance between particles i and j; µ is
a probing radius from 0.4σ to 5.0σ in 0.1σ increments
(47 µ’s in total), and X ∈ {l, s} denotes the species of
particle j.
For the bidisperse sample, we utilize 94 GX

i (µ) to rep-
resent the instantaneous local structure of the i-th parti-
cle (a point in a 94-dimensional (94D) hyperspace). We
next identify two groups of particles with “opposite” mo-
bilities following [18]: “soft” particles are on the verge of
a hop, and “hard” particles have the longest residence
times. Utilizing only a few hundred examples of the soft-
est and hardest particles, we carry out a linear classi-
fication analysis by computing the hyperplane (in the
94D hyperspace) that “best” separates soft versus hard
groups using the support vector machine (SVM) method
[42–44]. We compute two hyperplanes, one for large cen-
tral particles and one for small central particles, to avoid
misclassifications due to differences in their innate mobil-
ities. We also explored and found that inclusion of bond
orientation parameters did not significantly improve the
accuracy of the hyperplane.
From the trained hyperplane, we compute softness

values, Si(t), of particle i at time t, for every particle
throughout the entire observation period. Si(t) is the
normal displacement between particle’s local structure
(corresponding point in the 94D hyperspace) and the
“best” hyperplane. Si(t) is centered at zero and its dis-
tribution has a Gaussian form (Fig. 9 in SM [32]). Note,
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FIG. 2. (color online) Two conditional PDF’s, P (tR| 〈S〉tR),

for tR with similar 〈S〉tR . The red solid and blue dashed

lines are exponential fits, P (tR|〈S〉tR) = (1/t̄R)e
−tR/t̄R , with

t̄R = 400s and 270s for 〈S〉tR = −0.8 and 0.8, respectively;

fitting is to the tails (tR > 200s) of the conditional PDF’s.
Inset shows the overall PDF, P (〈S〉tR). The solid line is a
Gaussian fit. The subgroups that constitute the conditional
PDF’s are shaded with same colors.

Si(t) exhibits different spatial correlations than bond ori-
entation parameters [45], and its correlation length is ap-
proximately one particle diameter [Fig. 8(b) in SM [32]].
Indeed, short-range correlations of softness appear to be
a generic feature of disordered solids [22]. The mean soft-
ness, 〈S〉tR , averaged during every tR interval were also
calculated; by using the mean, we remove fluctuations
due to particle vibrations, which amount to a standard
deviation of δS = 0.2. The distribution of 〈S〉tR also
has a Gaussian form albeit with narrower range (Fig. 2
inset).
To explicitly show the difference in local environments

captured by the softness parameter, we report the lo-
cal radial distribution functions during every tR interval.
First we select all intervals that have similar 〈S〉tR , for
particles of species A (A ∈ {l, s}); the total number of in-
tervals selected is nA. Then we compute the local radial
distribution of B particles (B ∈ {l, s}),

gBA (r) =
1

nA

∑

A

〈

nB(r)

2ρBπrdr

〉

tR

, (2)

where nB(r) is the instantaneous number of B particles
in a circular bin of radius, r, with bin width, dr = 0.05σ,
centered on the A particle; 2πrdr is the bin area. ρB is
the number density of B particles in the viewing area.
Fig. 3(a) shows the measured gll for four different 〈S〉tR .

Note, large particles tend to form small crystalline do-
mains (Fig. 2 in SM [32]). Thus the first peaks of gll are
delta-function-like, and their heights depend inversely on
dr. Interestingly, a monotonic decrease in the magnitude
of the first three peaks of gll is apparent as 〈S〉tR increases.
This observation suggests that when the density of sur-

FIG. 3. (color online) (a) Measured gll(r) of large particles
around a central large particle. (b) Measured gsl (r) of small
particles around a central large particle. (c) Numbers of large
(blue circle) and small (green triangle) neighbors within r <
1.2σ as a function of 〈S〉tR(see main text).

rounding large particles increases, the central particle
tends to be “harder” and less likely to hop. By contrast,
gsl displays an opposite trend in the first peak [Fig. 3(b)]
suggesting that a “softer” environment is created by in-
creasing surrounding small particle density. Fig. 3(c)
shows the numbers of large (N l

l ) and small neighbors
(Ns

l ) within the radial distance r = 1.2σ from the cen-
tral large particle. These results suggest that one can
make a particle “softer” in a binary system by replacing
neighboring large species with small ones. Note, gls, g

s
s,

N l
s, and Ns

s of small central particles exhibited similar
trends (Fig. 10 in SM [32]).

We next group the tR intervals from the same particle
species by similar 〈S〉tR to derive the conditional PDF,
P (tR|〈S〉tR). Interestingly, P (tR|〈S〉tR) = (1/t̄R)e

−tR/t̄R

has an exponential form; t̄R is the mean residence time
averaged over the same-softness subgroup. Fig. 2 shows
the exponential distributions of P (tR|〈S〉tR) for two large
particle subgroups. Their mean softness are 〈S〉tR =
−0.8 ± 0.2 and 0.8 ± 0.2 and corresponding mean resi-
dence times are t̄R = 400 and 270 seconds, respectively.
A correlation between hopping rate (1/t̄R) and softness
was also reported in a 3D Lennard-Jones simulation [18].

The different exponential P (tR|〈S〉tR) provide direct
experimental evidence for coexistence of multiple acti-
vation processes in the supercooled colloidal liquid. We
measured t̄R versus 〈S〉tR for both species. These func-
tions are well described (Fig. 4) by quadratic (SM [32])
and exponential (t̄R = t̄R0exp(b 〈S〉tR)) forms. Numer-
ical fitting gives: t̄R0 = 332, and b = −0.22 for large
particles, and t̄R0 = 186, and b = −0.26 for small ones.
The prefactor t̄R0 is the t̄R at zero softness 〈S〉tR = 0.

Using the measured P (tR|〈S〉tR), and P (〈S〉tR), we can
readily compute the unnormalized P (tR) for the entire
supercooled liquid sample, as a superposition of different
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FIG. 4. (color online) (a) Measured t̄R as a function of 〈S〉tR ,
for large (black squares) and small (red circles) particles.
Solid and dashed lines are exponential fits (see main text).
The error bars indicate the standard deviations.

relaxation channels distinguished by 〈S〉tR :

P (tR) ≡ HW

∫ ∞

−∞

d 〈S〉tR P (〈S〉tR)P (tR| 〈S〉tR). (3)

Here H is the total number of tRs, and W is the bin
width of P (tR). The calculated P (tR) accurately repro-
duces measurements (black line, Fig. 1), thereby experi-
mentally demonstrating the origin of non-exponential re-
laxation in supercooled liquids with single particle res-
olution [14–16, 26]. In addition, data from a sample at
higher packing fraction (SM [32]) confirmed that P (tR)
is more stretched in more strongly supercooled samples
and that the decomposition into exponential channels is
still valid.
Finally we estimate the activation energy barriers and

distribution using measurements and a Kramers’ reac-
tion rate model [31, 46]. Here the activation energy can
be understood as the dynamic free energy due to di-
rect interactions and entropy from neighboring particles
[47, 48, 50]. The inset in Fig. 5(a) schematically shows
the dynamic free energy U(x), where x0 and xb are the
metastable and transition states along the reaction coor-
dinate x, respectively. The barrier height is defined as
Eb ≡ U(xb) − U(x0). In the limit Eb/kBT ≫ 1, Eb is
related to the mean residence time t̄R by:

t̄R ≃
2πkBT

Dsh

√

U ′′
0 |U

′′
b |

exp(
Eb

kBT
), (4)

where Dsh is the short-time particle diffusion coefficient,

U ′′
0 ≡ d2U(x)

dx2 |x=x0
and U ′′

b ≡ d2U(x)
dx2 |x=xb

are the second
derivatives of U(x) at x = x0 and x = xb, respectively.
This equation has been shown to be accurate in colloid
experiments when Eb ≥ 6kBT [51, 52].
To use Eq. (4), one also needs Dsh, U

′′
0 , and U ′′

b . For
large particles, we measured Dsh ≃ 0.04µm2s−1 at 0.1
millisecond, which is one quarter of its measured bare
diffusivity D0 ≃ 0.16µm2s−1. For small particles, D0

FIG. 5. (color online) (a) Estimated Eb as a function of 〈S〉tR
for both species. Inset: Schematic of the barrier-crossing ac-
tivation process. (b) P (Eb) of activation energy barriers.

was measured, and the same ratio Dsh/D0 assumed. To
determine the potential curvature, we assume the dis-
tribution of particle position during a tR follows the

Boltzmann distribution, P (x − x0) = exp[U(x0)−U(x)
kBT ],

and we approximate U(x) around x0 to be harmonic,
U(x − x0) = 1

2U
′′
0 (x − x0)

2 (Figs. 14, 15 in SM [32]).
U ′′
0 = 3.2±1.0×10−5and 1.5±0.5×10−5 Nm−1, for large

and small particles, respectively. We did not measure U ′′
b ,

due to statistics. Fortunately, Eb is rather insensitive to
U ′′
b ; we assumed U ′′

0 ≈ |U ′′
b |.

We thus estimate Eb as a function of 〈S〉tR : Eb/kBT =
E0/kBT + f〈S〉tR , with E0/kBT = 12.8, f = −0.21 for
large-, and E0/kBT = 11.0, f = −0.26 for small-particles
[Fig. 5(a)]. These Eb’s are in the same range as simula-
tions [18, 49, 50] when supercooled behavior starts to
emerge. The mean barrier-height for large-particles is
1.8 kBT more than small-particles; larger particles are
more arrested in the bidisperse system [53]. Combining
P (〈S〉tR) and Eb(〈S〉tR) results, we obtain the proba-
bility distribution, P (Eb), of activation energy barriers
[Fig. 5(b)].

To conclude, we experimentally demonstrated that
softness is effective in classifying particle-hopping fre-
quency in thermal, supercooled colloidal liquids. Parti-
cles with the same softness had local structural environ-
ments similar enough to give rise to exponential relax-
ation with a single activation time. We further demon-
strated that the measured combination of exponential
distributions produces the observed nonexponential re-
laxation behavior of the whole sample, and we estimated
activation energy barriers and their distribution. These
demonstrated capabilities in a thermal system represent
first experimental steps towards exploration of thermal
supercooled colloidal liquids and glasses, i.e., in a way
that permits simultaneous access to key structural, dy-
namical and thermodynamic information. Equilibrium
and nonequilibrium studies under a range of interesting
conditions, including varying density and fragility, during
aging, and under shear should be possible.
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