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Overdoped high temperature cuprate superconductors have often been understood within the
standard BCS framework of superconductivity. However, measurements in a variety of overdoped
cuprates, indicate that the superfluid density is much smaller than expected from BCS theory and
decreases smoothly to zero as the doping is increased. Here, we combine time-domain THz spec-
troscopy with kHz range mutual inductance measurements on the same overdoped La2−xSrxCuO4

films to determine the total, superfluid and uncondensed spectral weight as a function of doping. A
significant fraction of the carriers remains uncondensed in a wide Drude-like peak as T → 0 while
the superfluid density remains linear-in-temperature. These observations are seemingly inconsis-
tent with existing, realistic theories of impurity scattering suppressing the superfluid density in a
BCS-like d -wave superconductor. Our large measurement frequency range gives us a unique look at
the low frequency spectral weight distribution, which may suggest the presence of quantum phase
fluctuations as the critical doping is approached.

Unlike their underdoped counterparts [1], overdoped
cuprate superconductors have been believed to be well
described in terms of conventional BCS-like physics be-
cause of their relatively high carrier density [2] and the
observation of a large and well defined Fermi surface in
both photoemission (e.g., [3]) and quantum oscillation
(e.g., [4]) experiments. While these observations imply
that the normal state is conventional, it is an open ques-
tion whether the superconducting state is conventional
or not. Indeed, other studies indicate anomalies e.g.,
it has been found that the superfluid density was lower
than expected as seen in different families of overdoped
cuprates (e.g., Tl-2201 [5, 6], Hg-1201[7], Bi-2212 [8], La-
214 [9–12]), and most recently shown comprehensively in
overdoped La2−xSrxCuO4 films [13].
The unexpectedly low superfluid density naturally

leads to two important questions: (1) Where are the
“missing” carriers that do not condense into the super-
fluid? And (2) why do they not condense? These is-
sues are at the heart of the superconductivity debate in
overdoped cuprates. While some of the past observed
behavior may indicate pair-breaking or disorder affects
within a BCS-like theory, conflicting ideas include elec-
tronic phase separation or the presence of large supercon-
ducting phase fluctuations and so a complete consensus
has yet to emerge.
To study these questions, we utilize time-domain THz

spectroscopy (TDTS) in conjunction with kHz range mu-
tual inductance measurements to systematically track
both the condensate and the free carrier spectral weight
as a function of doping for overdoped La2−xSrxCuO4

films. We find that a significant fraction of the total
spectral weight remains uncondensed as T → 0 and man-
ifests as a Drude-like peak at frequencies comparable to
the theoretical weak coupling BCS gap. Taken with the

linearity of the superfluid density with temperature, our
observations are difficult to reconcile with extant theories
of a BCS-type d -wave superconductor in the presence of
impurity scattering. Analysis of the frequency depen-
dence of the spectral weight distribution points to the
presence of significant quantum phase fluctuations. This
limits any mean-field description of the superconducting
transition for overdoped La2−xSrxCuO4.
Dynamical measurements such as TDTS indepen-

dently determine both the real and imaginary parts of
the frequency dependent conductivity σ(ν) at the rele-
vant energy scales for superconductivity [14]. Measure-
ments presented here were performed on 20 monolay-
ers (∼ 13.2 nm) thick La2−xSrxCuO4 films deposited on
LaSrAlO4 substrates by molecular-beam-epitaxy. Fig-
ure 1 shows the real σ1(ν) and imaginary σ2(ν) conduc-
tivities at different temperatures, T , for an overdoped
La2−xSrxCuO4 film (x = 0.23) with Tc = 27.5K. For
T ≫ Tc, σ1(ν) is frequency independent while σ2(ν) is
small, which is consistent with the behavior of a nor-
mal metal at frequencies well below the scattering rate.
As the temperature is lowered across Tc, σ1(ν) first rises
and then decreases as spectral weight at higher frequen-
cies is transferred to frequencies below the measurement
range. Similarly, below Tc, σ2(ν) develops a 1/ν-like de-
pendence as the low frequency spectral weight condenses
into a delta function at ν = 0. However, even down
to the lowest temperatures in the superconducting state
(T = 1.6K), σ1(ν) remains comparable in size to the
normal state σ1(ν) (Fig. 1b). A similar residual σ1(ν) as
T → 0 has also previously been observed in films of the
cuprate Bi-2212 for a range of dopings [8, 15]. Such obser-
vations are incompatible with conventional BCS-like be-
havior in the absence of impurity scattering where nearly
all the low frequency spectral weight should condense into
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FIG. 1. Real (a,b) and imaginary (c,d) parts of the THz op-
tical conductivity as a function of frequency (ν) and temper-
ature. Green curves in (a) and (c) indicate the conductivities
at Tc. Vertical dashed lines in (b) and (d) denote Tc.

a ν = 0 delta function and consequently σ1(ν) at THz
frequencies should be negligible in the T → 0 limit.
To study this further, we directly compare the mea-

sured σ1(ν) in the normal state and in the limit T → 0
for a range of overdoped La2−xSrxCuO4 films. Figures
2a, 2b and 2c show σ1(ν) at temperatures above and be-
low Tc for the superconducting films with Tc = 27.5K,
13.5K and 7K respectively. The carrier spectral weight
(S) contributing to the finite frequency conductivity is
directly proportional to the area under the σ1(ν) curve
i.e.,

∫∞

0+
σ1(ν)dν = π

2
S. Based on this, it is apparent

from Fig. 2a-c that a significant fraction of the normal
state spectral weight (Sn) remains uncondensed at THz
frequencies as T → 0. Moreover, the ratio of the un-
condensed spectral weight (Su) to the normal spectral
weight becomes even greater (i.e., more anomalous) for
the more overdoped films. This behavior can be quanti-
fied by fitting σ1(ν) at each doping and temperature to
a single Drude peak i.e., σ1(ν) = Sτ/(1+ ν2τ2)) (dashed
lines on Fig. 2a-c). Figure 2e shows that the ratio of the
uncondensed spectral weight to the normal state spec-
tral weight monotonously approaches unity as the critical
doping is approached i.e., Su/Sn → 1 as Tc → 0.
This observation naturally answers the first question

raised above i.e., where are the “missing” carriers? Our
results here indicate that they remain uncondensed in
a THz wide Drude-like peak down to T = 0. To cor-
roborate this, we have performed two-coil mutual induc-
tance (MI) measurements on the same films to extract
the spectral weight in the superconducting delta function

(Sδ). Figure 2d shows Sδ as a function of temperature as
obtained from the penetration depth (λ) from MI mea-
surements (Sδ = 1

2πµ0λ2 ) for the x = 0.23 film (see Sup-

plementary Material (SM) for details). As expected from
previous MI measurements on overdoped La2−xSrxCuO4

films [13], Sδ(T ) is essentially linear with T down to the
lowest temperature. We extrapolate the data to obtain
Sδ at T = 1.6K to directly compare with Sn and Su ob-
tained from TDTS at the same temperature for a range
of dopings (Fig. 2e). In the context of the Ferrel-Glover-
Tinkham (FGT) sum rule, Sn = Sδ + Su. Consequently,
if our measured Su is indeed due to the “missing” carri-
ers, then [Sδ+Su]/Sn = 1 regardless of doping. As shown
in Fig. 2e Sδ/Sn → 0 as Tc → 0 while [Sδ + Su]/Sn ≈ 1
(within ±10%) for all samples. Although a small amount
of spectral weight may be transferred to high frequencies
below Tc[16], our analysis shows that the vast major-
ity remains at low frequencies. Note that because Tc is
decreasing across the series of samples, the reduced tem-
perature at T = 1.6K increases. This thermal effect on
Sδ is negligible when considering the overall decrease in
Sδ with doping ([13]).
Having located the “missing” spectral weight, we con-

sider a few reasons these charge carriers don’t condense.
One obvious possibility is pair-breaking scattering due
to impurities which smears out the d -wave node leading
to nodal Bogoliubov quasi-particles and a suppression of
the superfluid density ns. Such pair-breaking in both
the unitary and Born scattering limits within BCS the-
ory have been studied extensively [17–21], with the latter
considered recently [22] to explain the suppression in su-
perfluid density observed in [13]. Our results presented
here seem to be inconsistent with these models as previ-
ously implemented for the following reasons.
First, aside from the delta function at ν = 0, σ1(ν)

for a dirty d -wave superconductor may be composed of
both a narrow low frequency Drude-like peak and – if the
normal state scattering rate is larger than the supercon-
ducting gap 2∆/h – a part that is an increasing func-
tion of ν (e.g., [23, 24]). For weak-coupling d -wave BCS,
2∆ = 4.28kBTc and thus, 2∆/h is expected to range
from 0.62THz to 2.45THz for the films studied here i.e.,
mostly within the spectral range of our spectrometer.
Yet, we do not observe any signatures of 2∆ compatible
with this theory in the measured σ1(ν) (Fig. 2a-c and
SM Fig. S5). This implies that the superconducting gap
may be larger than expected from weak-coupling BCS
and remains reasonably large as the critical doping is ap-
proached, or the gap’s signature is otherwise suppressed
in the spectra. Additionally, while the ν → 0 limit of the
residual σ1(ν) can be sizable within dirty d -wave theory
[20], the corresponding frequency dependence of σ1(ν),
within existing theory, is not expected to be the simple
form of the single Lorentzian that we observe (except in
the unitary limit).
Second, it is expected that impurity scattering drives
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FIG. 2. σ1(ν) above and below Tc for overdoped La2−xSrxCuO4 films with (a) Tc = 27.5K, (b) Tc = 13.5K and (c) Tc = 7K.
Solid lines indicate the data. Dashed lines show a Drude fit with a single scattering rate, σ1(ν) = Sτ/(1+ν2τ 2). Shaded region
represents the expected superfluid spectral weight. (d) The superfluid spectral weight Sδ with temperature for the film with
Tc = 13.5K as derived from the complex impedance using a two-coil MI setup (ν = 40 kHz). The dashed line represents a linear
extrapolation to determine Sδ for T = 1.6K Inset: The real and imaginary parts of the mutual inductance with temperature
for the same film. (e) Spectral weight, normalized to the normal state spectral weight Sn, of the superfluid (Sδ) and of the
uncondensed carriers (Su) as a function of doping at T = 1.6K. Sδ is determined from the MI data as in (d) while Su and
Sn are determined from Drude fits to σ1(ν). Yellow circles give (Sδ + Su)/Sn. Solid lines are guides to the eye. Error bars
represent the 95% confidence interval (2 s.d.) in the fitting procedure to extract S.

a change from the expected linear-T behavior of ns for a
clean d -wave superconductor to a quadratic dependence
at a crossover temperature T ∗∗ for both unitary and Born
scatterers [17–19, 21]. Irrespective of the kind of scatter-
ing, within extant theory, T ∗∗ reflects a frequency scale
γ that is roughly the width of the residual Drude peak
1/τ in the limit T → 0 as T ∗∗ ≃ γ = 1/τ [18]. Figure 3a
shows the extracted scattering rate γ = 1/τ with temper-
ature for all the films studied in this work. For each film,
γ >∼ Tc and thus T ∗∗ should be >∼ Tc. This implies that
ns should scale quadratically with T for all T < Tc. On
the contrary, in the present films as well as in the previ-
ous work on similarly grown films [13], ns remains quite
linear down to the lowest temperatures (Fig. 2d) and no
crossover behavior is observed. While a recent work [25]
claims that one can reconcile the observed broad residual
Drude with the linear-T behavior of ns, the underlying
calculations incorporate an unphysical infinite number
of infinitely weak scatterers (Born-limit) and assume a
much higher Tc for overdoped La2−xSrxCuO4 than what
has been observed in both single-crystals and thin films.
Observations reminiscent to ours have been

made in heat capacity measurements of overdoped
La2−xSrxCuO4 single crystals [26], where a large
fermion-like linear-in-T contribution was found deep
into the superconducting state. For overdoped samples
with Tc ∼ 20K, the heat capacity coefficient was roughly
70% of the normal state and reached essentially 100%
by Tc ∼ 7K. A straightforward interpretation of such
data is microscopic electronic phase separation i.e., the
presence of superconducting regions embedded in a

normal state metallic background. Our measurements
support such a scenario in that the scattering rate of
our T → 0 residual Drude is about the same as that
in the normal state (Fig. 3a). However, if the residual
Drude peak were due to such phase separation then the
volume fraction corresponding to the normal metallic
region needs to be exceedingly large (e.g., nearly 95%
for the film with Tc = 7K). It is hard to reconcile robust
superconductivity as well as the exceedingly uniform Tc

for all the films measured (as characterized by a sharp
transition in the dissipative part of the MI (Fig. 2d and
[13])) with a scenario of such extreme phase separation.
A quantity that has been quite useful in understand-

ing TDTS on cuprates is the phase stiffness Tφ, which is
the energy scale to introduce twists in the phase φ of the
superconducting order parameter ∆eiφ. As detailed in
previous works [14, 27, 28], Tφ ∝ νσ2. Measuring Tφ at a
finite frequency sets a length/time scale over which the
system is dynamically probed. In the absence of fluctua-
tions, the system will be stiff on all length and time scales
and thus Tφ ∝ νσ2 should be independent of the prob-
ing frequency. In general, lim

ν→∞
νσ2 = Sn i.e., the total

spectral weight. Interpreting the residual Drude peak as
uncondensed superconducting charge carriers allows us to
study Tφ as a function of frequency. We note that this is
similar to the analysis performed in [15] where a residual
conductivity peak in Bi-2212 was interpreted as arising
from a superconducting collective mode. However, even
in the absence of such an interpretation, analyzing νσ2

allows us to get a good picture of the distribution of the
low frequency spectral weight.
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FIG. 3. a Scattering rate γ, in units Kelvin, with temperature for all films measured. γ is obtained with a single Drude-fit to
σ1(ν) at all temperatures as shown in Fig.2 a-c. Error bars represent the 95% confidence interval in the fitting procedure to
extract the parameter γ = 1/τ . (b) νσ2, normalized to Sn, versus frequency for all films at T = 1.6K. Circle and diamond
symbols represent the TDTS and MI data respectively. Dashed lines are guides to the eye. (c) The average phase uncertainty

determined from the quantum Debye Waller factor WQ = e−<δθ2>/2 as a function of doping. Here, WQ = Sδ/Sn. Red line is
a linear guide to the eye to the data shown as yellow squares.

Figure 3b shows νσ2 (normalized to the normal state
spectral weight Sn) at T = 1.6K as a function of fre-
quency for all films measured by TDTS. Note that the
σ2 considered here has been corrected from its measured
value to take into account a small contribution from di-
electric screening (SM). We also plot in Fig. 3b the rela-
tive superfluid spectral weight (Sδ/Sn) as obtained from
MI measurements at ν = 40kHz on the same films to di-
rectly compare in the ν → 0 limit. For all dopings, νσ2 as
measured in the THz region can be smoothly connected
with the MI measurement. Moreover, νσ2 is strongly in-
creasing with probing frequency for all dopings. In sys-
tems where the entire σ2 arises from superconducting cor-
relations, such dependence indicates that the phase of the
system appears “stiffer” when probed at higher frequen-
cies (i.e., at shorter length and time scales) but fluctua-
tions degrade the superconductivity on longer length and
time scales. This perspective has been used previously
to analyze the THz response of the thermally fluctuating
regime above Tc [14, 27, 28]. Additionally, the behavior
of νσ2 is in accordance with Kramers-Kronig relations
for σ (SM sec. D).
Note that one naturally expects large quantum phase

fluctuations to accompany the small T → 0 superfluid
stiffness [13]. These phase fluctuations can either be seen
as a consequence of the reduced superfluid density or as
a cause. Distinguishing between the two is currently not
possible within our analysis. Nevertheless, our measure-
ment of the inductive response over a large frequency
range allows us to perform a unique analysis to highlight
the presence of quantum phase fluctuations. This analy-
sis may hold independent of the mechanism for the sup-
pression of the superfluid density. Renormalization of the
system’s diamagnetic response can be described in terms
of a quantum Debye-Waller factor WQ [29–31] which has
been used in theoretical works to parametrize the sup-
pression of the superfluid density e.g., WQ = Sδ/Sn. In

the context of the self-consistent harmonic approxima-
tion, WQ can be directly related to the root mean phase

uncertainty of the order parameter as WQ = e−<δθ2>/2

[32, 33]. This approach has been invoked to describe
global phase coherence in Josephson-junction arrays [32]
and phase disordered s-wave superconductors [34]. This
is an intermediate regime form that obviously cannot be
valid in the critical regime itself. For the purpose of this
analysis, we assume that the normal state σ(ν) just above
Tc gives the spectral weight of the normal state diamag-
netic response (Sn). Figure 3c shows the root mean phase
uncertainty

√
< δθ2 > determined from WQ (Sδ/Sn in

Fig. 2e) as a function of doping. Remarkably, as the crit-
ical doping is approached (Tc → 0), the average phase
disorder

√
< δθ2 > extrapolates to π. The maximum Tc

for the La2−xSrxCuO4 cuprate family (∼ 45K) is near√
< δθ2 > → 0. Obviously π is a significant natural scale

for phase disordering at the transition and we propose
that this is a key indicator of strong quantum phase fluc-
tuations at the termination of the superconducting dome.
We note that Tc ∝

√
Sδ is expected to emerge from

quantum phase fluctuations within the (3+1)D-XY uni-
versality class with z = 1. Indeed, this is the scal-
ing found in [13], but only very near the QCP, around
0.25 < x < 0.26 (as well as in earlier work [11]). The
same scaling was found for extreme underdoped YBCO,
but only for 0.054 < x < 0.057 [21]. Note that all the
data analyzed here are either extrapolated to T = 0 or
taken in a regime where they are temperature indepen-
dent. Therefore, unlike previous work that concentrated
on thermal superconducting fluctuations [14, 27, 28], any
fluctuations here are quantum in nature and are associ-
ated with the zero-point motion of the condensate. While
our analysis points to the presence of quantum phase
fluctuations, further experiments are needed to deter-
mine whether they cause the low superfluid density or
not throughout the overdoped regime. Of course, close
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to the critical point fluctuations will indeed reduce the
superfluid density and so this may be the regime where
the critical scaling is observed. A scenario of phase fluc-
tuations does not obviously explain features like the large
linear-in-temperature heat capacity for overdoped sam-
ples [26]. It could be that the ultimate picture needs
to combine aspects of both fluctuations and phase sepa-
ration where the transition proceeds through the phase
disordering of weak superconducting links.

The authors thank L. Benfatto, D. Broun, D. Chaud-
huri, D. Chowdhury, S. Dodge, P. Hirschfeld, S. Kivelson,
M. Mondal, C. Varma, and I. Vishik, for helpful discus-
sions. Research at JHU was funded by the US DOE,
Basic Energy Sciences, Materials Sciences and Engineer-
ing Division through Grant DE-FG02-08ER46544. Film
synthesis by MBE and characterization at BNL was sup-
ported by the US DOE, Basic Energy Sciences, Materials
Sciences and Engineering Division. X.H. is supported by
the Gordon and Betty Moore Foundation’s EPiQS Ini-
tiative through Grant GBMF4410 to I.B.

∗ fahad@jhu.edu
† npa@pha.jhu.edu

[1] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida,
and J. Zaanen, Nature 518, 179 (2015).

[2] V. J. Emery and S. A. Kivelson, Nature 374, 434 (1995).
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