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We address the problem of resistivity saturation observed in materials such as the A-15 com-
pounds. To do so, we calculate the resistivity for the Hubbard-Holstein model in infinite spatial
dimensions to second order in on-site repulsion U ≤ D and to first order in (dimensionless) electron-
phonon coupling strength λ ≤ 0.5, where D is the half-bandwidth. We identify a unique mechanism
to obtain two parallel quantum conducting channels: low-energy and band-edge high-energy quasi-
particles. We identify the source of the hitherto unremarked high-energy quasi-particles as a positive
slope in the frequency-dependence of the real part of the electron self-energy. In the presence of
phonons, the self-energy grows linearly with the temperature at high-T , causing the resistivity to
saturate. As U is increased, the saturation temperature is pushed to higher values, offering a
mechanism by which electron-correlations destroy saturation.

I. INTRODUCTION

The resistivity has been observed to saturate at high-
temperatures in certain materials, such as the A-15 com-
pounds, while growing without bound in others, such as
the cuprates1–8. Resistivity saturation has been seen as
a signature of electron-phonon interactions9 and weak
electron-electron interactions. Many theoretical mech-
anisms have been proposed to address the problem of
resistivity saturation1,10–17. In this paper, we offer a
unique mechanism: the presence of two parallel quantum
conducting channels consisting of the usual low-energy
and the less obvious high-energy quasi-particles. These
emergent objects derive from electron-phonon interac-
tions. This is the main idea of our work, namely the role
of the hitherto unnoticed high-energy (i.e. band-edge)
quasiparticles, residing at or beyond the edge of the bare
band. The demonstration of this idea requires only low
order perturbation theory.

In particular, we evaluate the bare diagrams to leading
order in the electron-phonon coupling. It would also have
been possible to re-sum an infinite subset of diagrams by
doing a self-consistent version of the same approximation.
Moreover, for low energies, these are the only diagrams
which contribute (Migdal’s theorem)18. However, in our
work, it is in fact the high-energy quasiparticles which
play a key role, and therefore the use of Migdal’s the-
orem is no longer justified. Therefore, all higher order
diagrams enter into the series on equal footing. In the
case of weak electron-phonon coupling, the approxima-
tion used here is rigorously justified, while for the case
of intermediate or strong-coupling, we consider it to be
the most unbiased. It has also been shown in recent
work that self-consistent diagrammatic approximations
can lead to wrong results in certain cases19. Due to the
nature of our approximation, we restrict λ ≤ 0.5.

In the presence of phonons, the high-energy quasi-
particles lead to resistivity saturation. The mecha-
nism we propose has a unique signature in the LDOS,
which acquires peaks at or beyond the edge of the bare
band. Therefore, it can be identified experimentally us-
ing ARPES/STM measurements. It also has a distinct

signature in the optical conductivity (see SM-III), and
can therefore be identified using the latter as well.

We study the Hubbard-Holstein model on the Bethe
lattice in the limit of infinite spatial dimensions. The
electrons interact through on-site repulsion U , and couple
to an Einstein phonon mode with dimensionless electron-
phonon coupling strength λ. We perform perturbation
theory to second order in U and to first order in λ. We
compute the dc resistivity over a large range of tem-
perature. We find that it displays resistivity satura-
tion. In Fig. (1), we plot the resistivity, ρ, measured in
units of µΩ-cm, as a function of the temperature, T , for
T ≤ 1000K. We computed this resistivity for three sets
of parameters: (UD = .5;λ = .25), (UD = .5;λ = .5), and

(UD = 1;λ = .5) where D is the half-bandwidth. These
values seem compatible with the perturbative scheme
employed. For the middle set of parameters, the cal-
culated resistivity happens to be in good quantitative
agreement with the resistivity observed in the A-15 com-
pounds Nb3Sn and Nb3Sb

2. In particular, note the nega-
tive curvature of the resistivity vs. temperature curve for
T & 500K. For either weaker electron-phonon coupling
or stronger electron-electron interactions, the saturation
temperature increases beyond the scale that is probed in
experiments.

FIG. 1. The dc resistivity vs. temperature for the Hubbard-
Holstein model for three sets of parameters: ( U

D
= .5;λ = .25),

( U
D

= .5;λ = .5), and ( U
D

= 1;λ = .5), with D estimated as
2000K. The prolonged region of negative curvature found in
the middle set is observed in the A-15 compounds Nb3Sn and
Nb3Sb

2.

While previous studies of transport have focused on
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the conduction of low-energy quasiparticles, we iden-
tify a parallel quantum conduction channel, consisting
of high-energy quasiparticles defined by peaks in the
spectral function, at, or beyond, the edge of the bare
band that are sharp enough to be identifiable under cer-
tain conditions. In contrast to the low-energy quasi-
particles, which are scattered more strongly at higher
temperatures, the high-energy quasi-particles are pushed
to higher energies with increasing temperature, and are
therefore scattered more weakly. Denoting the resistivity
of the low- and high-energy quasiparticles by ρideal and
ρsat, respectively, the overall resistivity is given by the
parallel resistor formula

1

ρ
=

1

ρideal
+

1

ρsat
, (1)

where ρideal (ρsat) is defined at all temperatures as
the low (high)-frequency contribution to the integral in
Eq. (5) (detailed in supplementary materials Eqs. (SM-
1,SM-2)).

As the temperature increases, the high-energy channel
short circuits the low energy channel, and the resistivity
saturates. The high-energy quasi-particles are visible in
the local density of states (LDOS), which develops peaks
at high-energies as the temperature is increased, while
the central peak, associated with the low-energy quasi-
particles, simultaneously shrinks. This is a prediction of
our theory which can be tested using Scanning Tunnel-
ing Microscopy (STM). In Fig. (2), we plot the LDOS,
A(ω), at T = 1000K for the same parameters as used in
Fig. (1). The high-energy peaks are diminished by either
decreasing λ or by increasing U .

FIG. 2. The LDOS at T = 1000K for the same sets of pa-
rameters as in Fig. (1). The peaks located beyond the edges
of the bare band are signatures of the high-energy quasipar-
ticles, and are a prediction of our theory which can be tested
using STM. Figs. 4,8 display the T variation of A.

II. THE MODEL AND CALCULATION

The Hamiltonian for our model containing disorder,
interactions and a local Einstein mode phonon20 is the
following:

H =
∑
k

(εk − µ)a†kak + ω0

∑
q

b†qbq + U
∑
i

ni↑ni↓

+
g√
Ns

∑
k,q

a†k+qak(bq + b†−q) +
∑
j

εjnjσ, (2)

where ak is the electron destruction operator in momen-
tum state k, εk is the dispersion of the lattice, bq is the
phonon destruction operator in momentum state q, ω0 is
the energy of all phonon modes, U is the on-site Hub-
bard repulsion, Ns is the number of sites in the lattice,
and g is the electron-phonon coupling energy. The εj are
quenched random site energies, which are treated within
the Born approximation21, whereby the impurity aver-
aged non-interacting electron Greens function is broad-
ened G−1

0 → G−1
0 + i η and η = niπD(εF )〈ε2

j 〉.
The electrons hop on the infinite-dimensional Bethe

lattice, which has the density of states for energy ε ∈
[−D,D]

D(ε) =
2

πD

[
1−

( ε
D

)2
]1/2

(3)

where D is the half-bandwidth. For the remainder of
the paper, all energies will be measured in units of D ∼
2000K22.

Following Ref. (20) (see supplementary materials for
details), for T & ω0, the electron-phonon self-energy,
computed to O(g2), is expressed as:

ρΣel,ph(ω − µel) =
πλAel(ω − µel)

2
× T, (4)

where λ, defined by g2 ≡ πDλω0

4 , is a dimensionless mea-
sure of the electron-phonon coupling strength. For any
dynamical object Q(ω), ρQ(ω) ≡ − 1

π=m(Q(ω)), and the
subscript “el” refers to quantities computed in the ab-
sence of phonons (g=0), using second order perturbation
theory in the Hubbard U . Finally, A(ω) is the LDOS, ob-
tained by integrating ρG(ε, ω) over ε, the latter obtained
from Σ(ω) using Dyson’s equation.

The dc conductivity can be expressed in terms of the
spectral function via the formula23:

σ =
2

πT
σIRM

∫
dωf(ω − µel)f̄(ω − µel)I(ω − µel), (5)

where f(ω) ≡ 1
eβω+1

, f̄(ω) ≡ 1− f(ω), and β ≡ 1
T . The

spectral intensity, I(ω), is defined as

I(ω − µel) = π2

∫
dε φ(ε)ρ2

G(ε, ω − µel), (6)

where σIRM ≡ 1
ρIRM

, ρIRM is the Ioffe-Regel-Mott limit

of the resistivity, and the transport function is given ex-
plicitly as φ(ε) = Θ(1− ε2)× (1− ε2)

3
2 . We will measure



3

the resistivity in units of ρIRM ≈ 258µΩcm24. In the
limit that ρΣ(ω − µel)� D23,24,

I(ω − µel) ≈
1

2

φ [R(ω − µel)]
ρΣ(ω − µel)

, (7)

where Σ(ω) = Σel(ω)+Σel,ph(ω), R(ω−µel) ≡ ω+∆µ−
<e Σ(ω − µel), and ∆µ ≡ µ − µel tends to 0 as T →
∞. Both µ and µel are determined through the particle
sum-rule for the Green’s function. The approximation
Eq. (7) is excellent for the dominant frequency range at
all temperatures.

In our treatment of Eq. (5), we eschew the popu-
lar Sommerfeld approximation25,26 f(ν)f̄(ν) → Tδ(ν),
since it misleadingly throws out the contribution from
the high-energy peaks in I(ν). In Eq. (7), we note that
the spectral intensity I can be large at any frequency
where the imaginary self energy is small, and the real
part of the inverse Green’s function is also small.

III. RESULTS

We choose the parameters as follows. We set the den-
sity to n = 0.7. Since our calculation does not incor-
porate any Mott physics, the exact value of the density
does not change the qualitative features of the results.
We choose the phonon energy ω0 = 0.015. Since the tem-
perature regime of interest is in the semi-classical regime
(T � ω0), the value of ω0 has very little bearing on the
results (see Eq. (4)). We choose the impurity scattering
η = 0.0012. η is chosen to be small but finite to ensure
that the resistivity does not abruptly drop to zero above
a certain temperature. Once again, in the range of ex-
perimentally relevant temperatures, η has little bearing
on the results. Finally, we restrict λ ≤ 0.5 and U ≤ D,
so that low-order perturbation theory can be expected to
give reliable results.

A. U = 0.

In the case of U = 0, the free electrons are scattered
by phonons and impurities. In Fig. (3), we plot the re-
sistivity for λ = 0.25 and λ = 0.5. In both cases, the
resistivity displays a maximum at T ≡ Tmax, before fi-
nally increasing again at high-temperatures. As λ in-
creases, Tmax decreases, while the height of the peak
increases. In the T → ∞ limit, the resistivity curves
collapse onto a straight line, whose slope is fixed by the
impurity scattering of the electrons. This picture differs
from the textbook discussions27 of a monotonically in-
creasing phononic resistivity. In the latter, the electrons
are modeled as an electron gas with an infinite band-
width, while here, the narrow electronic band is a key
component, leading to high-energy quasiparticles at or
beyond the edge of the bare band. The presence of the
high-energy parallel conducting channel causes a rollover

and hence a maximum in the curve. In fact, resistivity
curves similar to those in Fig. (3) have also been found
in theoretical studies of the Periodic Anderson Model
and the Kondo Lattice model28–34, as well as the half-
filled Hubbard model close to the Mott transition35–38.
In these works, the resistivity is due entirely to electron-
electron correlations, while in the present work, electron-
phonon interactions are the driving force behind the max-
imum in the resistivity vs. temperature curve.

FIG. 3. ρdc vs. T for λ = 0.25, 0.5 and U = 0. As λ increases,
Tmax decreases, while the height of the peak increases. In the
T → ∞ limit, the resistivity curves collapse onto a straight
line.

In Fig. (4), we plot the LDOS for λ = 0.5 at T =
0.1, 0.4, 1, 3. For T . Tmax, the LDOS consists of a sin-
gle central peak, and hence the conductivity is dominated
by the low-energy channel (ρ ≈ ρideal). For T & Tmax,
the LDOS consists of two high-energy peaks, and hence
the conductivity is dominated by the high-energy chan-
nel (ρ ≈ ρsat). As the temperature increases past Tmax,
the high-energy quasi-particles are pushed to increasingly
higher energies and have correspondingly smaller scatter-
ing rates, causing the resistivity to decrease.

FIG. 4. The LDOS for λ = 0.5 and U = 0 at T =
0.1, 0.4, 1, 3. For T . Tmax, the central peak is a signa-
ture of the low-energy quasiparticles, while for T & Tmax,
the two high-energy peaks are signatures of the high-energy
quasiparticles. The high-energy peaks get pushed to higher
energies with increasing temperature. As the scattering rate
of the high-energy quasiparticles decreases, so does the resis-
tivity (Fig. (3)).

The existence of high-energy quasiparticles requires
R(ω − µel) to vanish at large values of the frequency.
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This in turn, requires that <eΣ(ω − µel) have positive
slope of order unity. In Fig. (5), we plot ρΣ and <eΣ at
T = 0.04. Using Eq. (4) (for small η),

ρΣ(ω − µel) =
πλD(ω)

2
× T, (8)

<e Σ(ω − µel) = πλ× T × ω

[
1−Θ(ω2 − 1)

√
1− 1

ω2

]
.

(9)
The slope of <e Σ(ω − µel) increases linearly with T ,
pushing the high-energy quasiparticles to higher energies,
causing their scattering rate to decrease. Meanwhile, the
scattering rate of the low-energy quasiparticles grows lin-
early with T .

L 

0.06 

2 4µel + W

FIG. 5. ρΣ and <eΣ for λ = 0.5 and U = 0 at T = 0.04.
This relatively low temperature is already in the semi-classical
regime (T & ω0), where Eqs. (8) and (9) are excellent ap-
proximations. The positive slope of <eΣ is responsible for
the high-energy quasiparticles (Fig. (4)).

B. Finite-U .

In Fig. (6), we plot the resistivity vs. temperature
curve for λ = 0, 0.25, 0.5 and U = 1. For λ = 0, i.e.
the Hubbard Model, the resistivity is monotonic, but
has a kink at Tkink ≈ 0.4. For TFL < T < Tkink, the
resistivity is quasi-linear with negative intercept, while
T > Tkink, it is quasi-linear with positive intercept. Here,
TFL is the Fermi-liquid scale, below which the resistiv-
ity is quadratic with temperature. These features are also
observed in DMFT studies of the Hubbard model in both
the cases of small and large U23,39–41. For finite λ, the
resistivity once again displays a maximum at Tmax. Tmax
decreases and the peak becomes sharper with increasing
λ. In Fig. (7), we plot the resistivity vs. temperature
curve for λ = 0.5 and U = 0.1, 0.5, 1.0. Tmax increases
with increasing U .

In Fig. (8), we plot the LDOS for λ = 0.5 and U = 1
at T = 0.1, 0.4, 1, 3. For T . Tmax, the central peak
is a signature of the low-energy quasiparticles, while for
T & Tmax, the high-energy peaks are a signature of the

FIG. 6. The resistivity vs. temperature curve for λ =
0, 0.25, 0.5 and U = 1. For λ 6= 0, the peak shifts to the left
and becomes sharper with increasing λ. Note that when T is
restricted to experimentally relevant values, i.e. T . 0.5D,
only the left half of the peak appears, mimicking saturation
(see Fig. (1)).

FIG. 7. The resistivity vs. temperature curve for λ = 0.5 and
U = 0.1, 0.5, 1.0. Tmax increases with increasing U .

high-energy quasiparticles. Comparing with Fig. (4), the
high-energy peak values are smaller. This is a conse-
quence of the broadening of the imaginary part of the self-
energy beyond the edges of the bare-band (see Fig. (5)
and SM-Fig.(1)) as U is increased. Consequently, the
conductivity in the high-energy channel decreases, and
Tmax shifts to the right with increasing U (see Fig. (7)).

FIG. 8. The LDOS for λ = 0.5 and U = 1 at T =
0.1, 0.4, 1, 3. For T . Tmax, the central peak is a signa-
ture of the low-energy quasiparticles, while for T & Tmax, the
high-energy peaks are a signature of the high-energy quasi-
particles.
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IV. CONCLUSION

We have computed the resistivity vs. temperature
curve in the Hubbard-Holstein model on the infinite di-
mensional Bethe lattice, with weak to intermediate elec-
tronic repulsion U ≤ D, and electron-phonon coupling
strength λ ≤ 0.5. For λ > 0, it has a broad maximum,
consistent with materials that display resistivity satura-
tion. For λ = 0, it has a kink rather than a maximum.

We have identified two parallel quantum conducting
channels, consisting of low- and high-energy quasiparti-
cles. The former dominates at low temperatures, caus-
ing the resistivity to increase, while the latter dominates
at high temperatures, causing the resistivity to saturate.
The temperature scale of the saturation increases with
both increasing U and decreasing λ.

Finally, we have traced the origin of the high-energy
quasiparticles to the frequency-dependence of <eΣ,
which must have a region of positive slope of order unity.

This shape is inherited from the Hilbert transform of the
electronic LDOS (with λ=0, see Eq. (4)).

It is possible that resistivity saturation can be achieved
by more than one mechanism. The mechanism which
we propose (i.e. high energy quasiparticles) has a dis-
tinct signature in the LDOS, which can be observed using
ARPES/STM, as well as in the optical conductivity.
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