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Despite the importance of porous two-dimensional (2D) molecules and materials in advanced tech-
nological applications, the question of how the void space in these systems affects the van der Waals
(vdW) scaling landscape has been largely unanswered. Analytical and numerical models presented
herein demonstrate that the mere presence of a pore leads to markedly different vdW scaling across
non-asymptotic distances, with certain relative pore sizes yielding effective power laws ranging from
simple monotonic decay to the formation of minima, extended plateaus, and even maxima. These
models are in remarkable agreement with first-principles approaches for the 2D building blocks of
covalent organic frameworks (COFs), and reveal that COF macrocycle dimers and periodic bilayers
exhibit unique vdW scaling behavior that is quite distinct from their non-porous analogs. These
findings extend across a range of distances relevant to the nanoscale, and represent a hitherto un-
explored avenue towards governing the self-assembly of complex nanostructures from porous 2D
molecules and materials.

Two-dimensional (2D) materials like graphene, hexag-
onal boron nitride, and transition metal dichalcogenides
have been under intense research for the past decade due
to their favorable electronic, optical, thermal, mechani-
cal, and biological properties [1–5]. Allowing for variable
pore sizes beyond the atomic dimensions in graphene,
porous materials such as covalent organic frameworks
(COFs) [6–12], metal organic frameworks [13, 14], and
porous coordination polymers [15, 16] are endowed with
additional properties like permanent porosities, high
aspect ratios, and large internal surface areas. As
such, these materials have led to numerous technologi-
cal applications, including (opto-)electronics [17], (photo-
)thermal devices [18], energy storage materials [19], (bio-
)chemical sensors and filters [19, 20], size-selective cata-
lysts [21], and even drug delivery vectors [22, 23].

The assembly of 2D materials into sophisticated single-
layer heterostructures [24] and/or multi-layered archi-
tectures (including van der Waals (vdW) heterostruc-
tures [25–28]), provides access to even more diverse func-
tionalities, targeted properties, and applications. While
the monolayers in 2D materials are mostly formed via
strong covalent bonds, vdW (dispersion) interactions are
the predominant forces between the layers. In fact, these
ubiquitous forces are largely responsible for self-assembly,
and play a crucial role in determining the structure,
stability, and function of systems throughout chemistry,
physics, and materials science [29–32]. Arising from non-
local electrodynamic correlations between instantaneous
charge fluctuations in matter, vdW interactions are quan-
tum mechanical in nature with an influence that spans
distances (D) ranging from atomic dimensions (i.e., a
few Å) to well beyond the nanoscale [33–35]. At these
distances, dimensionality, local response properties, and
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topology—such as the presence of a pore—can strongly
influence the strength and scaling of these forces [36, 37],
and hence the observed system properties.

While analytic vdW scaling laws (such as D−5 or D−4

for two parallel insulating wires or plates) are central
to our understanding of infinite-size systems at asymp-
totic distances, rather unusual power laws have been ob-
served in both finite and extended systems at interme-
diate distances relevant to the nanoscale [37–45]. For
example, Gould et al. [38] argued that the binding en-
ergy of graphite varies as D−4 for non-asymptotic inter-
layer separations, which differs from the asymptotic D−3

behavior analytically demonstrated by Dobson and co-
workers [38, 46, 47]; this was later confirmed by high-level
quantum mechanical calculations [39, 41], which found
D−4.2 for D ≈ 3−9 Å. For C60 interacting with graphene
and a carbon nanotube, Dappe et al. [40] observed D−3

and D−3.5 scaling behavior, respectively, at distances
shorter than the C60 diameter, in stark contrast to their
D−4 and D−5 asymptotes. Topologically speaking, this
example demonstrates that void space has a profound in-
fluence over the vdW scaling in these systems, and gov-
erns the length scales over which one observes deviations
from asymptotic behavior. Since even slight variations
in these power laws can markedly impact properties and
functionalities, such unusual intermediate-range scaling
behavior demands further theoretical investigation.

Despite the importance of porous 2D building blocks
in the discovery and development of advanced materi-
als, the question of how void space—provided here by
variable pore sizes ranging from a few Å to 10s of nm—
affects the vdW interaction has been less studied. In this
Letter, we present analytical and numerical results that
demonstrate how variable pore sizes fundamentally alter
the vdW scaling landscape in three prototypical model
systems representing an atom and a porous macrocycle, a
porous macrocycle dimer, and a porous periodic bilayer.
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We find that certain pore sizes lead to rather unexpected
behavior at short and intermediate distances, and the
degree and extent to which these deviations differ from
asymptotic behavior can be tuned by varying the rela-
tive size and shape of these void spaces. When applied
to a number of popular COF building blocks, we find
that these simple models are in remarkable agreement
with first-principles based vdW methods, and reveal that
such systems exhibit unique vdW scaling behavior across
a range of distances (10−100 Å) quite relevant to the self-
assembly of complex nanostructures [48, 49].

Throughout this work, we quantify the scaling of the
vdW interaction energy, EvdW, between two objects sep-
arated by a distance, DAB , through the effective power
law exponent, Pvdw(D), defined as [37]:

PvdW(D) =

(
∂ ln |EvdW(DAB)|

∂ lnDAB

)∣∣∣∣
DAB=D

. (1)

As such, PvdW(D) provides an effective measure of the
EvdW(D) decay rate and delineates the length scales over
which the system deviates from asymptotic behavior. We
begin by considering a point particle, A, separated by D
from the center of an annulus with inner and outer radii,
r and R, as a model for the interaction of an atom with a
porous macrocycle (Fig. 1). To investigate the vdW scal-
ing behavior in this prototypical model system, we ana-
lytically derive PvdW based on a second-order perturba-
tive (pairwise) treatment of EvdW and compare our find-
ings to an infinite-order many-body expansion of EvdW

via the adiabatic-connection fluctuation-dissipation the-
orem (ACFDT). Assuming that the annulus (denoted by
ann[r,R]) is continuous and insulating, comprised of a
single atom type, and located outside of density over-
lap with A, the pairwise EvdW = −

∑
B C

AB
6 R−6

AB can
be computed by integrating over all annulus surface ele-
ments, dσB , located at a distance, RAB , from A, i.e.,

EA−ann
vdW (r,R,D) = − CAB

6

SB

∫
dσB R

−6
AB , (2)

wherein SB =
∫

dσB is the annulus surface area. This
integral can be analytically evaluated using cylindrical
coordinates to yield PA−ann

vdW (r,R,D) = −4/[1+(r/D)2]−
4/[1+(R/D)2]+4/[2+(r/D)2+(R/D)2], which is plotted
as a function of r and D for ann[r,R = 10 Å] in Fig. 1.

For r = 0, the annulus becomes a closed (non-porous)
disk and PA−disk

vdW (R,D) = PA−ann
vdW (0, R,D) = −4−4/[1+

(R/D)2]+4/[2+(R/D)2]. In the short range, R/D →∞
and this finite-sized disk mimics an infinite plate from
the perspective of A; in this case, one analytically re-
covers PA−disk

vdW = −4, as expected for an atom inter-
acting with an extended (2D) surface [50, 51]. This
is followed by monotonic decay with D as R/D → 0
and PA−disk

vdW → −6, which is consistent with the well-
known asymptotic expression for two finite-sized systems
obtained from non-relativistic quantum mechanics (i.e.,

D

R
r

FIG. 1. Effective power law exponents, PA−ann
vdW , for the pair-

wise (lines) and many-body (circles) vdW interaction between
a point particle and an annulus with R = 10 as a function of
r and D (all in Å). The mere presence of a pore fundamen-
tally alters the vdW scaling landscape and leads to a markedly
slower EA−ann

vdW decay rate across all non-asymptotic distances.

EvdW ∝ D−6). From this figure, one immediately sees
that the mere presence of a pore fundamentally alters
the vdW scaling landscape across all non-asymptotic dis-
tances. In the short range, we find that PvdW → 0 when
r 6= 0, as the transverse force on A originating from the
vdW interaction with the porous annulus vanishes. The
presence of a pore then leads to a markedly slower EvdW

decay rate across a wide range (0−40 Å) of distances,
with PvdW finally approaching (to ≈ 1%) the asymptotic
limit of −6 for D & 70 Å. Bound by the limiting cases of
r = 0 (closed disk) and r → R (infinitely-thin ring, with

PA−ring
vdW (R,D) = PA−ann

vdW (R,R,D) = −6/[1 + (R/D)2]),
variations in the relative pore size (r/R) and R can be
used to tune the extent and length scales over which the
system deviates from asymptotic behavior.

Since the inclusion of many-body vdW interactions of-
ten leads to power laws with significant deviations from
conventional pairwise predictions [37, 43, 51–55], we now
consider how an infinite-order many-body expansion of
EA−ann

vdW would influence the vdW scaling behavior in the
presence of a pore. Under the same assumptions, we
computed PA−ann

vdW for the smallest (r = 1 Å) and largest
(r = R = 10 Å) pore sizes considered above within
the random phase approximation (RPA) of the ACFDT
(see Supplemental Material) [56]. This approach [57–
60] accounts for collective many-body effects and elec-
trodynamic response screening in the long-range correla-
tion energy, and therefore provides an accurate descrip-
tion of the vdW interaction [53, 61–63]. Our ACFDT-
RPA results [56] are plotted in Fig. 1 and demonstrate
that many-body effects lead to negligible differences in
PA−ann
vdW for D outside of density overlap between A and

ann[r,R], thereby validating a pairwise treatment of this
model system for such length scales. We attribute this
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FIG. 2. Top. Effective power law exponents, P ann−ann
vdW , for

the pairwise vdW interaction between two stacked annuli with
R = 10 as a function of r and D (all in Å). Depending on
the relative pore size, PvdW exhibits widely varying behavior
at non-asymptotic distances, ranging from simple monotonic
decay (closed disks) to extended plateaus and maxima (rings).
Bottom. Extended plateaus (shown here for R = 10−40 Å)
occur for annuli with r/R = 0.75 at PvdW = −4.85 (dotted
line), and correspond to an enhanced vdW interaction across
a wide range of intermediate distances. Maxima of PvdW =
−4.88 (dashed line) correspond to minima in the EvdW decay
rate and occur for rings at a relative distance of D/R = 1.33.

to the fact that the void space hinders delocalization of
the polarizability across the annulus, thereby largely sup-
pressing the influence of many-body effects in PA−ann

vdW .

Next we consider two annuli in a sandwich configura-
tion as a model system for a stacked porous macrocycle
dimer (Fig. 2). Under the same assumptions as above,
the pairwise EvdW = −

∑
AB C

AB
6 R−6

AB was computed
by integrating over the surface elements, dσA and dσB ,
located on each annulus, i.e.,

Eann−ann
vdW (r,R,D) = − CAB

6

SASB

∫
dσA

∫
dσB R

−6
AB . (3)

This integral can also be evaluated analytically in a cylin-
drical coordinate system to obtain P ann−ann

vdW (r,R,D),
which is plotted in the top panel of Fig. 2 for two an-
nuli with R = 10 Å, and whose general form is given in
Ref. [56]. From this figure, one again sees that the pres-
ence of a pore leads to non-trivial changes in PvdW across
non-asymptotic D; depending on r/R, PvdW exhibits

widely varying behavior, ranging from simple monotonic
decay to the formation of extended plateaus and maxima.

In the absence of a pore, P disk−disk
vdW (R,D) = −4−2/[1+

(R/D)2] has a monotonically decaying form which ana-
lytically yields the expected limits of D−4 and D−6 for
short and asymptotic D (vide supra). As r increases, rad-
ically different behavior emerges with the formation of an
extended plateau in PvdW, which corresponds to an en-
hanced vdW interaction across the intermediate distance
range. Mathematically speaking, this plateau results
from a stationary point of inflection in PvdW, wherein
both ∂PvdW/∂D and ∂2PvdW/∂D

2 vanish. These con-
ditions form an underdetermined set of equations that
can be analytically solved [56] to yield the relative pore
size, r/R = 0.75, and distance, D/R = 0.91, at this
inflection point. As depicted in the bottom panel of
Fig. 2 for two ann[0.75R,R] with R = 10−40 Å, these
plateaus have an analytical value of PvdW = −4.85, and
span a remarkably wide range of distances. To approx-
imate the spatial extent of these plateaus, we located
the values of D when PvdW = −4.85 ± 0.05 (a range
equivalent to the dotted line width) and determined that
this enhancement in the vdW interaction persists for
D = 0.45R−0.55R. As r increases to the limiting case
of two interacting rings, we observe maxima in PvdW, at
which point the decay rate of EvdW is minimized. In this
case, P ring−ring

vdW (R,D) = −5 − 5/[1 + 4(R/D)2] + 4[1 +
2(R/D)2]/[1+4(R/D)2 +6(R/D)4], from which one sees

that P ring−ring
vdW → −5 in the short range as R/D → ∞

and the interaction between these two rings (or 1-spheres)
mimics that of two parallel, infinitely long wires (see
Fig. 2). At intermediate distances, maxima occur at
D/R = 1.33 and are bound above by PvdW = −4.88.

Since P ring−ring
vdW is equivalent to that of a point particle,

A, located directly above the perimeter (not the centroid)
of a ring, one can show that these maxima result from
the competition between vdW interactions of A with ad-
jacent and distant sectors of the ring.

To investigate the vdW scaling behavior in porous
2D materials, we now consider a model system consist-
ing of periodic layers tiled by hexagons with inner and
outer radii, r and R (denoted by layer[r,R]). When
interacting with a point particle, A, numerical evalua-
tion of EvdW [56] shows that PA−layer

vdW → 0 in the short
range once pores are present in the periodic layer, and
PA−layer
vdW → −4 in the long range, as expected for A in-

teracting with an infinite 2D surface [50, 51]. This short-
range behavior is completely analogous to PA−ann

vdW , which
again highlights the difference between porous and non-
porous molecules and materials. Numerical results for
PvdW in stacked periodic bilayers with R = 10 Å are de-
picted in Fig. 3, where one again sees that the mere pres-
ence of a pore leads to remarkably different vdW scaling
behavior. As expected for the pairwise vdW interaction
between two infinite non-porous plates, PvdW = −4 for
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FIG. 3. Effective power law exponents, P layer−layer
vdW , for the

pairwise vdW interaction between stacked periodic hexago-
nal bilayers with R = 10 as a function of r and D (all in Å).
When r 6= 0, such porous 2D materials exhibit fundamen-
tally different behavior (including the formation of minima in
PvdW) than the limiting case of two infinite non-porous plates
(r = 0), which has PvdW = −4 for all interlayer separations.

all D when r = 0. In porous 2D materials, however,
PvdW strongly depends on r/R, with larger values lead-
ing to markedly slower convergence to this asymptotic
limit. In fact, one can even observe minima in PvdW

for r/R values between 0.5 (at D ≈ 0.65R) and 1.0 (at
D ≈ 0.20R), at which point the decay rate of EvdW is
maximized. In contrast to porous macrocycles, porous
bilayer materials always have a faster decay rate than
their non-porous analogs, and therefore approach asymp-
totic behavior from below. Not surprisingly, PvdW is also
a function of the hexagonal ring size, with larger values
of R extending the range of non-asymptotic behavior to
D & 100 Å (e.g., for R = 40 Å) [56].

To explore how well these models describe the vdW
scaling in real porous 2D molecules and materials, we
now focus on macrocycle dimers (MC) and periodic bilay-
ers (BL) of three popular COF systems [6–8, 48, 64, 65]:
COF-5, TP-COF, and HHTP-DPB COF (Fig. 4). To do
so, we compare PvdW from the analytical ann[r,R] and
numerical layer[r,R] models with dispersion-inclusive
density functional theory (i.e., PBE [66] in conjunction
with the effective pairwise TS-vdW approach [67, 68])
in Quantum ESPRESSO [56, 69]. With a range of sim-
ple atom-to-atom distance estimates for the inner and
outer COF radii, these models provide PvdW values in
remarkable agreement with PBE+TS-vdW (Fig. 4, bot-
tom panel). Further optimization of these parameters
leads to physical values for r/R (r/R) of 0.72 (0.88),
0.75 (0.88), and 0.81 (0.93), for COF-5, TP-COF, and
HHTP-DPB COF, respectively; these values are essen-
tially contained in the ranges estimated above and yield
even better agreement between the curves [56]. Interest-
ingly, these values are in the neighborhood of r/R = 0.75,
which corresponds to the stationary point of inflection in

P ann−ann
vdW ; as such, COF macrocycle dimers are charac-

terized by PvdW that exhibit extended plateaus across a
range of distances (D ≈ 10−40 Å) quite relevant to the
nanoscale. For the bilayers, we also find characteristic
minima in PvdW at D ≈ 7−10 Å, where the decay rate
of EvdW has peaked.

In analogy to the ACFDT-RPA treatment of the
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FIG. 4. Top. 2D building blocks for COF-5 (red), TP-COF
(blue), and HHTP-DPB COF (orange). In this work, COF
macrocycles have capped terminal hydroxyl (−OH) groups.
Bottom. Effective power law exponents for stacked COF
macrocycle dimers (MC) and periodic bilayers (BL) obtained
using the analytical ann[r,R] and numerical layer[r,R] mod-
els introduced herein (solid lines), and the effective pairwise
PBE+TS-vdW approach (TS, circles and squares). P ann−ann

vdW

(P layer−layer
vdW ) are provided for a range of r and R (r and R)

based on simple estimates of the COF radii [56], and are in
high fidelity with the first-principles based PBE+TS-vdW ap-
proach. Quite interestingly, we find that these COF systems
have relative pore sizes that lead to characteristic features
such as extended plateaus (MC) and minima (BL) in PvdW.
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FIG. 5. Effective power law exponents for COF macrocycle
dimers (MC) when accounting for pairwise (TS, open circles)
and many-body (MBD, closed circles) vdW interactions.

A−ann model system above, we employed the many-
body dispersion (MBD) model [61, 62, 70–72] in con-
junction with PBE to investigate how higher-order vdW
interactions might influence the scaling behavior in COF
macrocycle dimers. As depicted in Fig. 5, we find that
these relatively short-ranged and anisotropic interactions
lead to some deviations in PvdW at small/intermediate
distances, and converge to pairwise behavior for D &
30−35 Å. Of greater interest here is the fact that the ex-
tended plateaus in PvdW are robust features of the vdW
scaling landscape, with many-body effects actually en-
hancing PvdW for D = 10−30 Å, a range of distances
quite relevant to COF self-assembly [48, 49].

The unique vdW scaling behavior originating from the
void space present in porous 2D molecules and materi-
als provides new insight into the self-assembly and de-
sign of complex nanostructures. For stacked macrocycle
dimers, plateaus and maxima in PvdW demonstrate that
a range of relative pore sizes lead to a non-trivial in-
terplay between PvdW, which favors small (large) pores
in the short (long) range, and EvdW/atom, which favors
small pores for all D. In extended systems, however,
PvdW and EvdW/atom work in tandem across all inter-
layer distances, collectively biasing the number of layers
preferred in a 2D material. Since the onset and extent of
these effects are governed by r and R (or r and R), these
quantities can be leveraged to influence the self-assembly
of complex porous nanostructures ranging from stacked
macrocycles to multi-layered COF architectures.
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