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The exponential growth of the out-of-time-ordered correlator (OTOC) has been proposed as a quantum sig-
nature of classical chaos. The growth rate is expected to coincide with the classical Lyapunov exponent. This
quantum-classical correspondence has been corroborated for the kicked rotor and the stadium billiard, which are
one-body chaotic systems. The conjecture has not yet been validated for realistic systems with interactions. We
make progress in this direction by studying the OTOC in the Dicke model, where two-level atoms cooperatively
interact with a quantized radiation field. For parameters where the model is chaotic in the classical limit, the
OTOC increases exponentially in time with a rate that closely follows the classical Lyapunov exponent.

Quantum chaos tries to bridge quantum and classical me-
chanics. The search for quantum signatures of classical chaos
has ranged from level statistics [1, 2] and the structure of
the eigenstates [3, 4] to the exponential increase of complex-
ity [5, 6] and the exponential decay of the overlap of two wave
packets [7–10]. Recently, the pursuit of exponential instabili-
ties in the quantum domain has been revived by the conjecture
of a bound on the rate growth of the out-of-time-ordered cor-
relator (OTOC) [11, 12]. First introduced in the context of
superconductivity [13], the OTOC is now presented as a mea-
sure of quantum chaos, with its growth rate being associated
with the classical Lyapunov exponent. The OTOC is not only
a theoretical quantity, but has also been measured experimen-
tally via nuclear magnetic resonance techniques [14–17].

The correspondence between the OTOC growth rate and
the classical Lyapunov exponent has been explicitly shown in
two cases of one-body chaotic systems, the kicked-rotor [18]
and, after a first unsuccessful attempt [19], the stadium bil-
liard [20]. It was also achieved for chaotic maps [21]. For
interacting many-body systems, while exponential behaviors
for the OTOC have been found for the Sachdev-Ye-Kitaev
model [11, 22] and for the Bose-Hubbard model [23, 24], a
direct demonstration of the quantum-classical correspondence
has not yet been made. Studies in this direction include [6, 25–
29] and [30].

Here, we investigate the OTOC for the Dicke model [31,
32]. Comparing with one-body systems, the model is a step
up toward an explicit quantum-classical correspondence for
interacting many-body systems, since it contains N atoms in-
teracting with a quantized field.

The Dicke model was originally proposed to explain the
collective phenomenon of superradiance: the field mediates
interatomic interactions, which causes the atoms to act col-
lectively [31, 33]. Superradiance has been experimentally
studied with ultracold atoms in optical cavities [34–39]. The
model has also found applications beyond superradiance in
various different fields. It has been employed, for instance, in
studies of ground-state and excited-state quantum phase tran-

sitions [33, 40–44], entanglement creation [45], nonequilib-
rium dynamics [46–49], quantum chaos [50–53], and mon-
odromy [54, 55]. Recently, the model has received revived
attention due to new experiments with ion traps [56, 57] and
the analysis of the OTOC [58, 59].

In the classical limit, the Dicke model presents regular and
chaotic regions depending on the Hamiltonian parameters and
excitation energies [53]. This allows us to benchmark the
OTOC growth against the presence and absence of chaos. The
results in the chaotic region display three different temporal
behaviors: a sinusoidal evolution at short times, followed by
an exponential growth, that holds up to the saturation of the
dynamics. Our approach, based on the use of an efficient basis
for the convergence of the eigenstates, enables the treatment
of systems that are large enough to reveal the exponential part
of the dynamics. We find that the exponential growth rate is
in close agreement with the classical Lyapunov exponent.

Quantum and Classical Hamiltonian.– The Dicke model
has N two-level atoms of level spacing ω0 coupled with a sin-
gle mode of a quantized radiation field of frequency ω. The
Hamiltonian is given by

ĤD =
ω

2
(p̂2 + q̂2) + ω0Ĵz + 2

γ√
j
Ĵx q̂ −

ω

2
, (1)

where ~ = 1; q̂ = (â† + â)/
√

2 and p̂ = i(â† − â)/
√

2 are
the quadratures of the bosonic field and â(â†) is the annihi-
lation (creation) operator; the collective atomic pseudo-spin
operators, Ĵx,y,z = (1/2)

∑N
n=1 σ

(n)
x,y,z , are the sums of the

Pauli matrices for each atom n; γ is the atom-field interaction
strength; and j(j+1) is the eigenvalue of the total spin opera-
tor Ĵ2 = Ĵ2

x+Ĵ2
y+Ĵ2

z . The critical point γc =
√
ωω0/2 marks

the transition from a normal phase (γ < γc) to a superradiant
phase (γ > γc). We set ω = ω0 = 1 in the illustrations below
and work with the symmetric atomic subspace (j = N/2),
where the ground state lies. The model has two degrees of
freedom.

The classical Hamiltonian is built by employing Bloch co-
herent states and Glauber coherent states [53, 60, 61]. The first
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are given by |z〉 =
(

1 + |z|2
)−j

ezĴ+ |j,−j〉, where z ∈ C

and |j,−j〉 is the ground state for the atoms. The Glauber
coherent states are |α〉 = e−|α|

2/2eαâ
† |0〉, where α ∈ C

and |0〉 in the photon vacuum. The canonical variables (p, q)
and (jz, φ) are given in terms of the coherent state parameters

α =
√

j
2 (q+ip) and z =

√
1+jz
1−jz e

−iφ, respectively. Deriving
the classical Hamiltonian is basically equivalent to replacing
the operators with the canonical variables (q, p) and (jz, φ) as
q̂ →

√
jq, p̂ →

√
jp, Ĵz → jjz , Ĵx → j

√
1− j2

z cosφ. It
reads

Hcl
D = j

ω

2

(
p2 + q2

)
+ jω0 jz + 2jγ

√
1− j2

z q cosφ. (2)

Since the classical limit is reached for j → ∞, the effective
Planck constant is ~eff = 1/j.

We denote the energy per particle as ε = Hcl
D/j, which is

independent of j. Since the number of bosons in the field is
unlimited, the range of values of ε is only limited from below.
The ground state energy is given by ε0(γ) = −ω0 for γ ≤ γc

and by ε0(γ) = −ω0

2

(
γ2
c

γ2 + γ2

γ2
c

)
for γ > γc.

With the classical Hamiltonian, we obtain a map of the de-
gree of chaoticity of the system as a function of the energy ε
and the interaction strength γ, as shown in Fig. 1. The task of
drawing the map is quite demanding. For each value of ε and
γ, we consider a large sample of initial conditions distributed
homogeneously in the energy shell. The Lyapunov exponent
λcl is evaluated for each initial condition solving the dynami-
cal equations and the fundamental matrix simultaneously [53].
If λcl > 0, the initial condition is chaotic and for λcl = 0, the
initial condition is regular. The percentage of chaos is defined
as the ratio of the number of chaotic initial conditions over the
total number of initial conditions in the sample. This percent-
age is shown in Fig. 1 with a color gradient: dark indicates
that most initial conditions are regular and light indicates that
most are chaotic. (Notice that one should look only at the re-
sults above the thick solid line that marks the ground state.)
Regularity predominates for γ/γc < 0.6. For γ/γc > 0.6,
most regular trajectories have low energies, while large ener-
gies are associated with chaos. This map guides our analysis
of the OTOC below.

Method.– The OTOC quantifies the degree of non-
commutativity in time between two Hermitian operators with
small or null commutator at time t = 0. In terms of position
and momentum, it is written as

Cqpn (t) = −〈Ψn| [q(t), p(0)]
2 |Ψn〉, (3)

where |Ψn〉 and En are the eigenstates and eigenvalues of
ĤD. In Ref. [19], Cqpn (t) is called microcanonical OTOC.
We refer to the exponential growth rate of the OTOC as ΛQ.
In the semiclassical limit, substituting the commutator by the
Poisson bracket, one gets for a classically chaotic system,
{q(t), p(0)} = ∂q(t)/∂q(0) ∼ eλclt, where λcl is the clas-
sical Lyapunov exponent. This suggests the connection be-
tween ΛQ and λcl, and justifies referring to ΛQ as the quantum
Lyapunov exponent.

Figure 1. Percentage of chaos over energy shells as a function of
energy and coupling strength. The thick (green) solid line follows
the ground state energy and the diamond marks the critical point.
The (blue) vertical dotted line indicates the coupling γ = 2γc and
the circle marks the energy chosen for the studies below.

Using the temporal evolution of the operator q̂(t) =
eiHtq̂e−iHt, Eq. (3) can be expressed as [19]

Cqpn (t) =
∑
l

bnl(t)b
∗
nl(t), (4)

where the matrix elements

bnl(t) = −i〈Ψn| [q̂(t), p̂(0)] |Ψl〉,
= −i

∑
k

(eiΩnktqnkpkl − eiΩkltpnkqkl),

with qnk = 〈Ψn|q̂|Ψk〉, pnk = 〈Ψn|p̂|Ψk〉, and Ωnk =
En − Ek. Since the Dicke Hamiltonian is of the form ĤD =
ωp̂2/2 + V (q̂) and [ĤD, q̂] = −iωp̂,

bnl(t) =
1

ω

∑
k

qnkqkl(Ωkle
iΩnkt − Ωnke

iΩklt), (5)

which simplifies the calculations. The OTOC is obtained by
evaluating numerically only the matrix elements of q̂ in the
energy eigenbasis. For this, instead of employing the usual
photon number (Fock) basis, we resort to an efficient basis that
guarantees convergence of the eigenvalues and wave functions
for a broad part of the spectrum (see [62]).

Quantum Lyapunov Exponent.– In this Letter, we concen-
trate our analysis on chaotic eigenstates. They are chosen
along the vertical line in Fig. 1, where the coupling param-
eter is strong, γ = 2γc. This line exhibits regular and chaotic
regions. From the ground state ε0 = −2.125 to ε ≈ −1.6,
the dynamics is regular. From ε ≈ −1.6 to ε ≈ −1.2,
regular and chaotic trajectories coexist. For larger energies,
ε > −1.2, chaos cover almost the whole energy shell. We
select a group of fifty-one eigenstates in the chaotic energy
region with En/(jω0) ∈ (−1.11,−1.09). They are indicated
with a circle in Fig. 1.

In Fig. 2 (a), we show that even for a single representative
eigenstate, the behavior of the OTOC is clearly exponential
from t & π/ω0 up to the saturation of the dynamics. The
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growth rate ΛQ = 0.139 is obtained by fitting the curve with
a straight line indicated with stars in the figure.

The exponential behavior is robust with respect to two dif-
ferent probes:

(i) It holds when we use the commutator for the operator q̂
at different times, Cqqn (t) = −〈Ψn| [q(t), q(0)]

2 |Ψn〉, as also
shown in Fig. 2 (a). The associated fit, indicated with circles,
provides Λ′Q = 0.139. Both exponential fits lead, within the
numerical uncertainty, to the same quantum Lyapunov expo-
nents.

(ii) The exponential growth rates are very similar for the
fifty-one different states selected in the chaotic region.

(a)

(b)

Figure 2. Panel (a): Exponential growth of the OTOC for an eigen-
state with En/(jω0) ≈ −1.1; numerical results (solid line), fit for
Cqp

n (t) (circles) and for Cqq
n (t) (stars); saturation times (square and

triangle). Panel (b): Log-log plot for the evolution of the OTOC and
saturation value (dotted lines). Inset: short time behavior compared
with sin2(t) and cos2(t) (dotted lines). We use j = 100, n = 1625.

The log-log plot in Fig. 2 (b) makes evident the appear-
ance of different behaviors at different time scales. For
t < π/ω0, the dynamics of Cqpn (t) [similarly for Cqqn (t)]
is controlled by the diagonal matrix elements in Eq. (5),
bnn(t) = (2/ω)

∑
k q

2
knΩkn cos(Ωknt), with few states con-

tributing significantly to the sum, all with energy differences
Ω ≈ 1.0. The short-time evolution is therefore approximately
described by the square of a cosine function [sine for Cqqn (t)].
The two sinusoidal curves are shown with dotted lines in the
inset of Fig. 2 (b).

At long times, the quantum dynamics saturates to the

infinite-time average,

Cpqn =
1

ω2

∑
k,l

q2
nkq

2
kl

(
Ω2
kl + Ω2

nk

)
, (6)

which is obtained from Eqs. (3) and (5) using that
exp[i(Ωij − Ωkl)t = 0 for Ωij 6= Ωkl. Cpqn and Cqqn are
shown in Fig. 2 (b) with dotted lines. These averages are
related with the square of the size of the available phase
space [19]. For the Dicke Hamiltonian, it scales with j2 and
with the number of bosons in the system, which grows with
the excitation energy.

After the exponential growth, the OTOC fluctuates around
its asymptotic value, as seen in Fig. 2 (b), with a standard de-
viation σ. We define the saturation time tS as the time when
the OTOC reaches for the first time the valueCpqn −σ. The val-
ues of tS forCqpn (t) andCqqn (t) are marked in Fig. 2 (a) with a
triangle and a square, respectively. The saturation time marks
the point beyond which quantum effects are strong and the
quantum-classical correspondence no longer holds, therefore
the association between tS and the Ehrenfest time. The satura-
tion of the dynamics for finite quantum systems is in contrast
to what one finds for classical systems, where the spectrum
is continuous. As j increases and the system approaches the
classical limit, Cpqn grows and tS increases with it.

Quantum-classical correspondence.– In a fully chaotic sys-
tem, there is one classical Lyapunov exponent associated with
the whole energy shell. Numerically, however, the Lyapunov
exponents are computed for finite times, so they depend on the
initial conditions. We evaluated the time average of the expo-
nents for each trajectory up to 10 000 units of time, which is
enough to have stable results. The trajectories for several ini-
tial conditions are depicted in Fig. 3 (a). This figure shows the
Poincaré surfaces of section projected on the plane (q, p) for
φ = 0 and energy −1.1ω0. In addition to chaotic trajectories,
one identifies also regular trajectories. These islands of stabil-
ity are clearly visible in Fig. 3 (b) as small black regions. This
bottom panel is a classical map of chaos for the same energy
and plane of Fig. 3 (a). The color code represents the values
of the finite time Lyapunov exponents obtained for each initial
point in the phase space.

We consider thousands of initial conditions, from which a
large number Nch is chaotic. To obtain a single value for the
Lyapunov exponent for the chaotic region of the energy shell,
we average over those initial conditions that give rise to classi-
cal chaotic trajectories and discard those with zero exponents.
We then have,

λ̃〈ln〉 =
1

Nch

Nch∑
k=1

λk = lim
t→∞

1

t

1

Nch

Nch∑
k=1

ln(eλkt). (7)

The purpose of writing the last term above is to emphasize
that the classical Lyapunov exponent λ̃〈ln〉 is the average of
logarithms. We can, however, compute also the logarithm of
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Figure 3. Panel (a): Poincaré surfaces of section projected on the
plane (q, p) for φ = 0 and energy −1.1ω0 for various initial con-
ditions. Panel (b): map of chaos over the same Poincaré surfaces
in terms of the finite time classical Lyapunov exponents. These ex-
ponents are evaluated for each trajectory up to 10 000 units of time,
which is enough to have stable results.

the average,

λ̃ln〈.〉 = lim
t→∞

1

t
ln

[
1

Nch

Nch∑
k

eλkt

]
(8)

= λmax + lim
t→∞

1

t
ln

[
1

Nch

∑
k

e(λk−λmax)t

]
→ λmax.

For t→∞, one might expect λ̃〈ln〉 to converge to λ̃ln〈.〉. But
for finite times, as discussed in Ref. [18], the quantum Lya-
punov exponents ΛQ are closer to λ̃ln〈.〉 than to λ̃〈ln〉, because
ΛQ is obtained from the logarithm of the fit. This closer prox-
imity between ΛQ and λmax is confirmed for the Dicke model
as well.

In Fig. 4, we compare the classical Lyapunov exponent
λ̃〈ln〉 (lower green horizontal line), the maximum classical
Lyapunov exponent λmax (black dotted line), the quantum
Lyapunov exponents ΛQ (red circles) for the fifty-one energy
states, and the average over the quantum Lyapunov exponents
(orange solid line surperposed by the line for λmax). The
quantum exponents fluctuate due to the oscillations that mod-

Figure 4. Comparison between the classical Lyapunov exponent
λ̃〈ln〉 (lower green horizontal line), the maximum classical Lyapunov
exponent λmax (black dotted horizontal line), and the quantum Lya-
punov exponents ΛQ (red circles) for Cqp

n (t) for fifty-one states of
different energies around ε/ω0 ≈ −1.1. The solid orange line de-
picts the average value of ΛQ and the shaded region represents the
standard deviation around it.

ulate the exponential growth and to finite size effects; the stan-
dard deviation corresponds to the shaded area in the figure. In-
creasing the value of j would reduce this uncertainty. While
λ̃〈ln〉 = 0.112, the maximum classical Lyapunov exponent,
λmax = 0.127, coincides with the average value of the quan-
tum Lyapunov exponent, Λ̄Q = 0.126, within its standard de-
viation σΛ = 0.012.

Discussion.– We showed that for the Dicke model in the
chaotic region, the OTOC grows exponentially fast in time
with a rate comparable to the classical Lyapunov exponent.
These results confirm that the quantum-classical correspon-
dence established by means of the OTOC is not exclusive to
one-body systems, but is valid also for interacting systems
with more than one degree of freedom. This work provides a
proof-of-principle and should motivate similar studies in other
interacting systems.

We stress that to clearly identify the quantum exponential
growth and extract its rate, we need to have access to large
system sizes. This was possible here, because we resorted to
an efficient basis to construct the eigenstates.

The instrument of our analysis was the microcanonical
OTOC [Eq. (3)] corresponding to the eigenstate expectation
value of the commutator of two operators. Its use in stadium
billiards [19] prevented the observation of the quantum expo-
nential growth, which was only possible with the introduction
of Gaussian states [20]. In our case, however, the eigenstates
were excellent probe states for revealing the OTOC exponen-
tial growth. This is an important result for future studies of
interacting systems, since the eigenstates are essential build-
ing blocks for thermal averages.
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tum phases and entanglement properties of an extended Dicke
model,” Ann. Phys. 382, 85 – 111 (2017).
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of the Jaynes-Cummings model,” J. Stat. Mech. 2009, P07011
(2009).
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