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Usually the transport of information requires either an electromagnetic field or matter as a 

carrier.  It turns out that the Dirac vacuum state itself can be exploited as a potentially loss-free 

carrier of information between two distant locations in space.  At the first location a spatially 

localized electric field is placed, whose temporal shape is modulated, for example, as a binary 

sequence of distinguishable high and low values of the amplitude.  The resulting distortion of the 

vacuum state reflecting this information propagates then to a second location, where this digital 

signal can be read off sequentially by a static electric field pulse.  If this second field is supercritical 

it can create electron-positron pairs from the manipulated vacuum state.  The original information 

transported by the vacuum is then imprinted on the temporal behavior of created particle yield for a 

selected energy. 
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 There are typically three distinct modes under which classical (either analog or digital) 

information can be communicated from a sender to a receiver.  These can involve the direct 

transport of matter (e.g., regular mail), the propagation of a (coded) distortion of a matter-based 

medium (e.g., sound waves) or, technologically most important, the transport of electromagnetic 

radiation.  In this Letter, we provide a proof of concept, that, at least in principle, there can be a 

fourth mode, which requires neither a medium nor any propagating radiation.  It is based on the 

numerical finding that the Dirac vacuum state itself can be manipulated in a controlled way by a 

spatially localized electric field if its amplitude is modulated in time.  The resulting coded distortion 

of the vacuum state evolves to a distant location where the receiver is located, which can read off 

this signal using, for example, the electron-positron pair creation process. 

 The very idea that information (about the existence of objects) can be obtained without particles 

being exchanged has already been suggested by Elitzur and Vaidman [1] and observed 

experimentally [2].  In contrast to our scheme, here this information is communicated by an 

interrogating photon based on an "interaction-free" measurement in an interferometer.  

 Several of the remarkable properties of the vacuum state (leading to the Casimir effect [3] or the 

vacuum polarization [4]) have already been verified experimentally.  Recently, probing the vacuum 

using very intense external laser fields has also become a subject of wide interest [5].  Numerous 

experimental labs worldwide [6] aim at exploring the vacuum's non-linear properties with the goal 

to test spectacular predictions such as light-light scattering [7], photon splitting [8], vacuum 

birefringence [9], or the intriguing creation of electron-positron pairs [10,11]. 

 Our theoretical approach is based on computational quantum field theory to determine the 

electron-positron field operator from the Dirac equation [12].  The data show that the original coded 

distortions due to the temporal modulation of the sender's field modify the pair creation process at 

the receiver's location.  We compare the resulting number of electron-positron pairs as a function of 

time as a key diagnostic obtained from the Dirac equation with the predictions by a simple but fully 

analytical model that captures the basic ideas of this scheme.   

 In the framework provided by the Dirac equation, the vacuum state is described by unoccupied 

states of positive energy (>mc2) and the full occupation of each state of negative energy (<–mc2).  A 

direct interpretation of the states with a negative energy (called negaton states or Dirac sea) is 

possible based on the charge-conjugation symmetry and the resulting corresponding hole theory.  

The complete set of occupied states can be described equivalently by either standing or by (left and 

right) traveling waves.  For our phenomenon, it is more illustrative to view these states as traveling 
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waves with a fixed momentum.  As a side issue, we note that due to its negative energy, denoted by 

e, a state with negative momentum k corresponds to a probability flux to the right, i.e. the velocity is 

v = ck/e.  Due to the fermionic Pauli exclusion principle it is not possible to increase the population 

of each negaton level, however, by using a spatially localized electric field, it is possible to 

rearrange the populations by effectively blocking some of the right traveling probability by forcing 

it to a complete stop and a consequent reflection. 

 

 
 

Figure 1   Sketch of the set-up for the vacuum as a carrier of information.  In the left inset 
we show the time-dependence of an electric pulse that is spatially localized at a distant L 
from the receiver.  The receiver contains a spatially localized supercritical field that creates 
e–- e+ pairs from the (modulated) vacuum.   

 
 The geometry of our set-up is sketched in Figure 1.  The sender modulates the temporal 

amplitude FS of an electric field, which is spatially localized around x = –L and points in the 

direction opposite of the receiver.  In our simplified example, the original sender's message is 

encoded here by a three-square pulse sequence with characteristic pulse turn-on and -off times.  The 

receiver is is located at x = 0, where a temporally constant narrow electric field FR is placed.  This 

field is supercritical, i.e. its associated potential energy VR exceeds twice the positron's rest energy, 

(VR>2mc2), such that it can create fermions based on the Schwinger mechanism [11].  The detector 

measures the number of positrons N(E,t) within a selected energy range centered at E and outputs 

the corresponding time-dependence of the creation rate Γ(t) ≡ dN(E,t)/dt. 

 In the absence of the sender's action (FS = 0), the receiver's supercritical electric field FR at x = 

0 would create a constant flux of positrons (electrons) evolving to the right (left).  The particles' 

growth is described by a production rate Γ that depends on the strength VR (>2mc2) and the spatial 
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profile of the field FR(x).  If this shape is given by FR(x) = VR Sech(x/w)2/(2w) with a narrow 

spatial width w, the creation rate per unit energy for positrons with energy E (for mc2 < E < 

VR–mc2) is given by the well-known expression [13,14]  

 

      Γ(Ε)  =  c [VR–E)2–m2c4]1/2/[B(VR–E)] T(E) (1a) 

     Τ(Ε) ≡ – sinh[πpw] sinh[πkw] / {sinh[π(VR/c+p+k)w/2] sinh[π(VR/c-p-k)w/2]}             (1b) 

 

where k ≡ – [(E-VR)2–m2c4]1/2/c, p ≡ [E2–m2c4]1/2/c and B is the extension of the system.  The 

number density of positrons would grow here linearly in time, i.e., N(E,t) = Γ(E) t.  In a prior note, 

it was shown [14] that the positrons with energy E are converted uniquely from the particular 

negaton state with (negative) energy e ≡ E–VR, with (negative) momentum k and (positive) velocity 

v = – c [e2–m2c4]1/2/e.  This one-to-one match follows from the usual tunneling picture for the 

thoroughly studied Schwinger pair creation process for a spatially localized force field, where an 

incoming (negaton) state (with uplifted energy) can tunnel through the supercritical force region.  

This also means that the fastest negaton states for x < 0 [with velocity v =  c 

[(VR–mc2)2–m2c4]1/2/(VR–mc2)] create the slowest positrons [with zero velocity, i.e. E = mc2].  

 In the presence of the sender's field (FS≠0), the probability flux of those negaton states with 

energy e in the range –mc2 < e < –mc2 – VS, [where VS is the (positive) magnitude of the potential 

energy associated with the field] is completely reflected at x = – L.  As VS < 2mc2, the sender 

cannot create any particles.  The spatially vacated portion in the negaton states originates at x= – L, 

evolves with the speed v = – c [e2–m2c4]1/2/e towards the receiver and finally arrives there after a 

characteristic delay time τ ≡ L/v, or  

 

                          τ(E,L)  =  L (VR–E) /{c [(E–VR)2 – m2c4]1/2}    (2) 

 

In other words, if the sender's field was turned on at t=0, then after a delay time τ the creation 

process for positrons with energies in the range VS–mc2 –VR < E < VS–mc2 will come to a complete 

halt.  As this delay time increases monotonically with E, the halt of the creation process manifests 

itself first for the slowest positrons (E close to mc2).  The shortest possible delay time τ decreases 
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naturally with increasing amplitude of the sender's field VS.  If VS is sufficiently large, then fast 

negaton states (with a speed close to c) can be blocked, such that the shortest arrival time of the 

vacant portion of the negaton state would be L (mc2+VS)/{c [(mc2+VS)2–m2c4]1/2}, which 

approaches consistently the natural limit τ → L/c with increasing VS. 

 If we assume now that the sender's field FS(x,t) can be turned on and off in time in a controlled 

way, i.e. VS becomes a function of time, then this modulation (provided in our example by the 

three-pulse sequence) is directly mapped onto the pair creation rate of the positrons at a given 

energy.  Using the simplistic assumptions discussed above one can define and calculate a 

time-dependent pair-creation rate Γ(E,t) = χ(E,t) Γ(E).  The resulting number density of all 

accumulated positrons with energy E is given by N(E,t) = ∫ dt Γ(E,t) and the total number of pairs 

naturally amounts to N(t) = ∫ dE Ν(E,t).  Here χ(E,t) conveys the information contained by VS(t).  It 

can be chosen as a smooth threshold function that changes its value continously from χ=0 to χ=1 or 

by the Heaviside unit step function θ(x) ≡ (1+x/|x|)/2 as its discontinous limit.  To reflect the energy 

dependent time delay due to the finite propagation speed from the sender to the receiver, we could 

model the threshold function as χ(E,t) = θ[VR–mc2–VS(t-τ(E,L))–E].  We therefore arrive at the 

prediction  

  

         N(E,t)  = ∫ dt Γ(E) θ[VR – mc2 – VS(t – L(E–VR)/{c[(E–VR)2 – m2c4]1/2}) – E]  (3) 

 

where the rate Γ(E) is calculated from Eq. (1). 

 In order to examine the validity of this analytical prediction, we have to solve the quantum field 

theoretical system exactly.  We refer the reader here to numerous prior works about the 

computational details and just state the final results here [12,15].  In short, the method to compute 

the energy spectra, pair creation rates and spatial distributions of the particles for external fields 

with arbitrary space-time dependence is based on numerical solutions to the time-dependent Dirac 

equation, which governs the time evolution of the electron-positron field operator.  This operator in 

its momentum representation is obtained on a numerical space-time grid.  The spectra of the created 

positrons are then determined via the expectation values of the creation and annihilation operators 

as N(E,t) ≡ 〈b(E,t)†b(E,t)〉.  
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 In Figure 2 we display the temporal growth of the positrons N(E,t) with energy E = 1.2 mc2.  

The receiver's field of amplitude VR = 2.5 mc2 was turned on at time t=0 leading to the early linear 

growth with slope Γ matching that of Eq. (1).  We assume that the sender decodes her message by 

turning her field on and off three times with various durations as shown by the rectangular pulse 

train FS(t) in the Figure.  Here the first pulse was turned on at time TS,1 (=10-3 a.u.) and lasted a 

duration TD,1 (=4 ×10-3 a.u.).  After a time TS,1 + τ, the blocked (spatially vacant) portion of the 

negaton states arrives at x=0 and, as a result, N(E,t) stops growing for a period of TD,1, after which 

the pair creation process resumes with its original rate Γ.  The sender's second and third pulses (with 

TS,2 =10-2 a.u. and duration 6×10-3 a.u. and TS,3 =2.5×10-2 a.u. with duration 3×10-3 a.u.) are then 

equally mapped onto the corresponding following intervals of interruption and resumption of the 

pair creation process.  The open circles for N(E,t) correspond to the numerical solution of the Dirac 

equation, while the solid line is the analytical prediction of Eq. (3).  In view of the extreme 

simplicity of this model and the fact that there are no free parameters to fit the data, the agreement is 

superb and therefore describes the basic mechanism of the propagation of the vacuum's distortion 

remarkably well. 

 

 
 

Figure 2   The open circles show the growth of the number density of created positrons N(E,t) 
as the vacuum is temporally modulated by the sender's electric field of magnitude FS(t) shown 
below.  For comparison, the solid line is the prediction according to Eq. (3).  The displayed 
pulse durations of the sender's field are in 10-3 atomic units  [L=1.5 a.u., VS=0.35mc2, 
wS=2.2×10-2 a.u., VR=2.5mc2, wR=2.2×10-3 a.u., the electric fields have the spatial shape –VS 
sech[(x+L)/wS]2/(2wS) and VR sech(x/wR)2/(2wR), positron energy E=1.2mc2, the slope of the 
graph is Γ(Ε)=0.732 with T(E)=0.268 and delay τ=1.71×10-3a.u., numerical box B=32 a.u. 
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with 32,768 spatial and 10,000 temporal grid points to solve the Dirac equation] 
 

 There is an interesting secondary side effect of "electron echoes" that is based on the actual 

transport of matter and can accompany the vacuum distortion effect at later stages.  It occurs if the 

distance between the sender and reader L is too small, or equivalently, if the duration of the sender's 

message is too long.  This most important modification of the vacuum transmission scheme arises 

from the fact that (starting at time t=0) also electrons are simultaneously created by the receiver's 

field.  These are ejected to the left back towards the sender's field, which can bounce them back to 

the receiver, where they can re-enter the creation zone at x=0.  To avoid the dynamical complication 

of this bouncing back, we have purposely chosen the timing of the sender's field such that it was 

zero precisely when the left traveling electron-bunch traversed the region around x = – L. 

 In order to focus now exclusively on the impact of this echo effect, we have chosen a simple 

sender's signal that was turned on at time TS (=10-4 a.u.) and remained on as displayed on the 

bottom of Figure 3. 

 
Figure 3   Impact of the electron echoes on the growth of the number density of created 
positrons N(E,t) as the vacuum is blocked by the sender's electric field FS(t) shown below.  For 
comparison, the solid line is the prediction according to Eq. (4).  [All field and numerical 
parameters are as in Fig. 2, except the positron energy E = 1.25mc2, leading to Γ(Ε) = 0.700 
with T(E) = 0.272 and delay τ = 1.824×10-3a.u.,] 

 

 The data obtained from the numerical solution of the Dirac equation (open circles) shows that 

after the time 2τ, the creation of the positrons unexpectedly resumes, despite the fact that ES is still 

turned on and the relevant negaton states (for x < –L) continue to be blocked in this case.  However, 

in contrast to Figure 2, here the growth resumes at a different time and also with a different rate R Γ, 
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which is reduced by a factor of R<1.  This is precisely the time when the returning partially 

occupied negaton states begin to re-open the positrons' creation channel.  The corresponding hole 

picture based on the negaton states (sketched in the inset) suggests how we can compute the rate 

reduction factor R analytically.  Here the original (fully occupied) negaton states are not only 

partially transmitted to x>0 [with a transmission coefficient T(E) that is given by Eq. (1b)] but also 

partially reflected to x<0 with reflection coefficient R(E) [= 1–T(E)].  After a time max(TS,τ) this 

portion is reflected at x = –L and approaches x = 0 at time max(TS,τ)+τ.  Due to the prior reduction 

of its probability current by a factor of R, now only the new fraction of RT can be transmitted 

(corresponding to the creation of positrons), while the fraction R2 is reflected.  This alternative view 

suggests the following simple analytical prediction for N(E,t) based on a periodic sequence of 

linear growth and plateau intervals for max(TS,τ) = τ: 

 

N(E,t)  = Γ Σn=1  Rn-1 {[t–(2n–2)τ] U[(2n–2)τ,ΤS+(2n–1)τ;t] + (ΤS+τ) U[ΤS+(2n–1)τ,∞;t]} 
   (4) 

Here the generalized unit-step function is defined as U[t1,t2;t] ≡ 1  if t1 < t < t2 and U ≡ 0 otherwise.  

Once again, the good agreement with the exact numerical data (open circles) suggests that the 

above simple picture captures the basic ideas of the electron echoes.  We should mention that in an 

equivalent electronic picture (where the field in the Dirac Hamiltonian is coupled to a negative 

charge) this step-wise periodic sequence of the complete inhibition and the resumption of the 

growth (at reduced rate) corresponds to the well-known formation process of electronic bound 

states in the corresponding attractive (but asymmetric) potential well as studied in [16,17]. 

 The geometry as well as the numerical parameters were chosen with the main focus of 

presenting this new phenomenon from a most transparent perspective.  We certainly made several 

oversimplifications, none of which, however, should have a qualitative impact.  From an 

experimental perspective, the most serious assumption was that the receiver's supercritical electric 

field can break down the vacuum and generate electron-positron pairs.  Even though this process 

has not been observed in a laboratory setting yet (due to the enormously large required electric field 

strength), its observation is consistently predicted by many independent theoretical works [5].  

 While the main focus of the present work was to point out that the Dirac vacuum is in principle 

capable of transporting classical information loss-free under idealized conditions, we briefly 

outline here some dispersion-based mechanisms that could deteriorate the signal's quality for long 
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distances L in a real experiment.  First, due to the (unavoidable) finite turn-on duration, the sender's 

field would not impact (block) the flux of all negaton states simultaneously.  In fact, the flux of 

low-momentum modes would be naturally reduced before faster modes, which could be modelled 

by a generalized time-dependent delay time τ.  Furthermore, realistic particle detectors would 

measure positrons within a finite energy band.  If the delay time τ varies strongly within this band, 

dispersive effect might deteriorate the recovery of the original sender's signal by the positron 

current.  As one measure of this effect (~ |dτ/dk|) decreases with large momenta, we would expect it 

be relevant only for slower negaton states.  In addition, if the orientation of the sender's or the 

reader's electric field varies significantly with the position in three spatial coordinates, this could 

also act as an (independent) loss-mechanism.  In contrast to quantum information theory, where the 

decoherence induced by the interaction with the environment can be decremental to photonic or 

ionic signal storage and its transport, it is not fully explored what the leading physical mechanisms 

for decoherence in negaton states may be. 

 Finally, we should note some differences of our proposed scheme to the quantum energy 

teleportation protocols pioneered by Hotta [18], where the entanglement of the vacuum's 

fluctuations plays a central role.  In contrast to our scheme, here the result of the sender's local 

(energy inducing) measurement needs to be communicated classically to the receiver, who then 

performs an (energy extracting) measurement that depends on the information announced.  Also, 

recently, Jonsson et al. [19] showed that quantum information can be transmitted using a massless 

quantum field without the mediation of any energy carrying quanta related to Casimir-like 

interactions.  Here the receiver has to provide the (signal dependent) energy for the detection of the 

signal. 

 In summary, we have suggested that the Dirac vacuum state has sufficient structure that it could 

act -at least in principle- as a carrier of information.  For example, this information can be imprinted 

on the Dirac vacuum via a temporally modulated electric field.  We should comment that the 

required complete reflection of the incoming negaton states at x = – L (into left moving states) is not 

in contradiction with the fermionic Pauli-exclusion principle, even though all negaton states are 

initially already fully occupied.  The original positive momentum of each (left moving) state is 

shifted by the sender's field at x = –L to even larger momenta, which automatically vacates these 

low momentum modes for x < –L.  Therefore, the required complete transfer of population 

(reflection) of the right traveling states into left going modes at x = –L is actually allowed, as it does 

not involve any (unpermitted) double excitation of these particular modes.  Lastly, we should 
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mention that while in this work the focus was on the impact of the modified vacuum on the pair 

creation process, modulated negaton states could also influence photon-photon scattering, 

birefringes processes, or other fascinating nonlinear phenomena predicted to occur already for the 

unperturbed vacuum.  We certainly hope that this work can motivate further exciting future studies. 
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