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We study the problem of preparing a quantum many-body system from an initial to a target state
by optimizing the fidelity over the family of bang-bang protocols. We present compelling numerical
evidence for a universal spin-glass-like transition controlled by the protocol time duration. The
glassy critical point is marked by a proliferation of protocols with close-to-optimal fidelity and with
a true optimum that appears exponentially difficult to locate. Using a machine learning (ML)
inspired framework based on the manifold learning algorithm t-SNE, we are able to visualize the
geometry of the high-dimensional control landscape in an effective low-dimensional representation.
Across the transition, the control landscape features an exponential number of clusters separated
by extensive barriers, which bears a strong resemblance with replica symmetry breaking in spin
glasses and random satisfiability problems. We further show that the quantum control landscape
maps onto a disorder-free classical Ising model with frustrated nonlocal, multibody interactions.
Our work highlights an intricate but unexpected connection between optimal quantum control and
spin glass physics, and shows how tools from ML can be used to visualize and understand glassy
optimization landscapes.

State preparation plays a quintessential role in present-
day studies of quantum physics. The ability to reli-
ably manipulate and control quantum states has proven
crucial to many physical systems, from quantum me-
chanical emulators ultracold atoms [1–3] and trapped
ions [4–6], through solid-state systems like supercon-
ducting qubits [7], to nitrogen-vacancy centres [8]. The
non-equilibrium character of quantum state manipula-
tion makes it a difficult and not well-understood problem
of ever-increasing importance to building a large-scale
quantum computer [9].

Analytically, state preparation has been studied us-
ing both adiabatic perturbation theory [10] and short-
cuts to adiabaticity [11–15]. Unfortunately, these the-
ories have limited application in non-integrable many-
body systems, for which no exact closed-form expressions
can be obtained. This has motivated the development of
efficient numerical algorithms, such as GRAPE [16, 17],
CRAB [18], and Machine learning based approaches [19–
31]. State preparation can be formulated as an optimal
control problem for which the objective is to find the
set of controls that extremize a cost function, i.e. de-
termine the optimal fidelity to prepare a target state,
subject to physical and dynamical constraints. However,
cost functions are usually defined on a high-dimensional
space and are typically non-convex. For this reason, so-
phisticated algorithms must be devised to guarantee find-
ing the global optimum. Moreover, optimality does not
automatically imply stability and robustness of the so-
lution, which are required for experimental applications.
Establishing the general limitations and constraints of
quantum control is crucial for guiding the field forward.

Recently, it was shown that the quantum state prepa-
ration paradigm supports a number of control phase tran-
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FIG. 1: Bang-bang protocols h(jδt) to control a quantum
system with high fidelity (a) are equivalent to classical spin
configurations hj with log-fidelity playing the role of energy.
(b) Using k-flip Stochastic Descent, we explore the log-fidelity
landscape (c), and find a glass-like transition in the control
landscape described by the effective classical model Heff (d).

sitions by varying the protocol duration T [22, 32, 33],
exhibiting overconstrained, controllable, correlated, and
glassy phases. Glass-like systems are expected to feature
slow equilibration time scales related to an underlying
extremely rugged free-energy landscape. Such features
have been extensively discussed in the context of spin-
glass physics [34–37] and in hard combinatorial [38–41]
and random satisfiability [42–48] problems.
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In this work we provide evidence for the existence of a
generic glass-like control phase transition observed in the
manipulation of generic nonintegrable spin chains with a
single global control field. By sampling the optimization
landscape for this state preparation problem, we discover
the existence of a glass-like critical point marked by an
extremely rugged landscape with an exponential number
local extrema. This transition in the control landscape
is visualized using the manifold learning method known
as t-distributed stochastic neighbor-embedding (t-SNE)
[49], which reveals the clustering of minima near the glass
transition. We further present a mapping of this dynam-
ical optimal control problem to a static frustrated clas-
sical spin model with all-to-all multi-body interactions,
the energy landscape of which is in one-to-one correspon-
dence with the original optimization landscape. Similar
to the problem of finding the ground-state of spin-glasses,
we find strong evidence for an exponential algorithmic
complexity scaling in the number of control degrees of
freedom for the task of locating the optimal protocol,
suggesting that quantum state preparation is NP-hard
in the glassy phase.

Problem Setup.—Consider a periodic chain of L inter-
acting qubits (Pauli operator Sµi ), controlled by a global
time-dependent transverse-field:

H(t) = −
L∑
i=1

JSzi+1S
z
i + gSzi + h(t)Sxi , (1)

with interaction strength J = 1 (sets the energy scale),
and an external magnetic field of a static z-component
g = 1 and a time-varying x-component h(t). The pres-
ence of the longitudinal z-field renders the model non-
integrable at any fixed time t, with no known closed-
form expression for the exact instantaneous eigenstates
and eigenenergies. We work in a non-perturbative regime
with all couplings of similar magnitude, and choose a
bounded control |h(t)|≤4 reflecting the experimental in-
feasibility to inject unlimited amounts of energy in the
system.

The system is prepared at t = 0 in the paramagnetic
ground state (GS) |ψi〉 of H[h=−2]. Our goal is to find
a protocol h∗(t) which, following Schrödinger evolution
for a fixed short duration T ∈ [0, 4], brings the initial
state |ψi〉 as close as possible to the target state – the
paramagnetic GS |ψ∗〉 of H[h= +2], as measured by the
many-body fidelity Fh(T ) = |〈ψ∗|ψ(T )〉|2. The specific
values of the field for the initial and target states, h=±2,
were chosen to be of similar magnitude as the interaction
strength J=1. We checked that the conclusions we draw
in this work are insensitive to this choice.

Whether preparing the target state with unit fidelity
is feasible in the thermodynamic (TD) limit L→∞, is
currently an open question related to the existence of
a finite quantum speed limit [15, 50, 51]. Let us formu-
late this objective as a minimization problem, and choose

as a cost function the (negative) log-fidelity Ch(T ) =
−logFh(T )/L. Ch(T ) remains intensive in the TD limit,
and we verified that our results do not change qualita-
tively starting from L≥ 6 [52]. Thus, the emerging log-
fidelity landscape h(t) 7→Ch(T ) corresponds to the con-
trol landscape for quantum state preparation [16, 53, 54]
(Fig. 1c). The optimal protocol h∗(t) is defined as the
global minimum of the log-fidelity landscape. We divide
the protocol duration T = δtNT into NT steps of size δt.
We are interested in the properties of the control land-
scape in the large NT limit. Motivated by Pontryagin’s
maximum principle and the optimal control literature, we
restrict the discussion to bang-bang protocols (Fig. 1.a)
where the control field can take only the maximum al-
lowed values h(t)∈{±4} at each time step [55, 56].

Control landscape & sampling method.— In general,
the control landscape Ch(T ) is a non-convex functional
of h(t): local minima obtained using a greedy optimiza-
tion approach depend on the initial starting points of the
algorithm. Using Stochastic Descent (SD) [52], we start
from a random protocol and flip the sign of h(jδt) at
k different time steps j1, · · · , jk chosen uniformly at ran-
dom (Fig.1b). A set of flips is accepted only if it decreases
Ch(T ). We repeat this process until a local minimum is
reached (see SI for psuedocode). A protocol h(t) is a SDk

local minimum if all possible k-flip updates increase the
log-fidelity. We use SDk algorithms with k = 1, k = 2
and k= 4 flips per local update. The best found fidelity
Fh(T ) as a function of protocol duration is presented in
Fig. 2 (black line).

Order parameters measured.— The structure of the
control landscape can be understood by measuring the
protocol correlator and the number of unique local min-
ima which we now define. Consider the set S = {hα(t)}
of all local log-fidelity minima. We sample M protocols
from S using SDk and denote h(t)≡M−1

∑M
α=1 h

α(t) as
the sample average. Let us define the protocol correlator :

qSDk
(T ) =

1

16NT

NT∑
j=1

{h(jδt)− h(jδt)}2, (2)

which is related to the Edwards-Anderson order param-
eter for replica symmetry breaking in spin-glasses [57–
59]. If the landscape is convex (unique minimum): q=0,
while if all the sampled local minima are uncorrelated:
q = 1. In collecting M samples, we denote M? ≤M as
the number of distinct protocols. We further define the
fraction of distinct local minima as

fSDk
≡M?/M. (3)

For a fixed number of samples, this fraction is sensitive
to drastic changes in the number of distinct local minima
in S.

Overconstrained and correlated phases.— The corre-
lator qSD1

as a function of the protocol duration T is
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FIG. 2: Preparing states in a chain of qubits with optimal
many-body fidelity Fh(T ) (black) features transitions from an
overconstrained phase (red region) to a correlated phase (blue
region) to a glass-like phase (purple region) at protocol dura-

tions T
(1)
c and T

(2)
c . This is revealed by the non-zero fraction

fSDk (T ) order parameter. We used k-flip stochastic descent
(SDk) on the family of bang-bang protocols with NT = 200,
L = 6 and M = 105.

shown in Fig. 2. For T < T
(1)
c ≈ 0.35, fSD1 = 1/M , and

the log-fidelity landscape is convex. While the maximum
attainable fidelity is small, there exist a unique optimal

protocol which is easy to find using SD1. At T = T
(1)
c ,

the control landscape undergoes a phase transition from
an overconstrained phase (qSD1

=0, red region) to a cor-
related phase (qSD1

> 0, blue region). This transition is
characterized by a rapid increase of the number of quasi-
degenerate SD1 local minima as shown by fSD1 reaching

unity for T > T
(1)
c . However, these local minima are

all separated by barriers of width 2 in Hamming dis-
tance (number of sign flips required to connect them).

This is revealed by using SD2 just above T
(1)
c , for which

fSD2
= 1/M and qSD2

= 0. At T ≈ 1.2, qSD2
becomes

non-zero, indicating the appearance of multiple SD2 local
minima. However, the unique fraction of those minima,
fSD2

, remains nearly zero. Remarkably, the control land-

scape undergoes another transition at T
(2)
c ≈ 2.3, char-

acterized by a proliferation of SD2 local minima, where
fSD2

∼O(1).

Glassy phase.— To better understand the physics
behind this SD2 glassy transition, we visualize the
log-fidelity landscape using the nonlinear-manifold ma-
chine learning method t-distributed stochastic neighbor-
embedding (t-SNE) [49] (Fig. 3). t-SNE embeddings pre-
serve local ordination of data, and hence allow to under-

stand the geometry of the control landscape. At T
(2)
c , the

geometry of the control landscape undergoes a drastic
transition with the appearance of distinct clusters in the
space of near-optimal protocols (Fig. 3 and SI for clus-

FIG. 3: (a)-(c) t-SNE visualization of the control landscape

above the SD2 glass critical point T
(2)
c ≈ 2.3. Each data point

represents a local Ch(T )-minimum – a bang-bang protocol
embedded in a two-dimensional t-SNE space. Embedded pro-
tocols are colored by their fidelity in the interval [Fmin, Fmax]
with intervals [0.919, 0.920], [0.958, 0.959], [0.992, 0.997] from
(a) to (c). (a) & (b): The local minima cluster are separated
by extensive barriers as seen in (d) & (e), the Hamming dis-
tance matrix for the local-minima protocols. distmax = 0.5,
0.52, 0.61 for (d), (e), (f) respectively. The protocols in the
Hamming matrix are grouped by their cluster index found us-
ing density clustering (see SI). (c) At larger protocol duration
(T = 3.4) large clusters fracture in an exponential number of
small clusters. The small clusters are separated by extensive
barriers (f). We used SD2 with NT = 200, L = 6 and sampled
5000 unique protocols.

tering procedure). Each cluster corresponds to a distinct
region of closely related SD2 minima. While protocols
within a cluster are similar and connected by small bar-
rier widths, protocols between clusters are separated by
barriers of width extensive in NT [52]. At longer proto-
col durations T &3.0 (Fig. 3.c-f), the number of clusters
appears to be exponential in NT and all protocols are
separated by extensive barriers (Fig. 3.f and see SI). The
number of SDk local minima is large, fSDk

→ 1, and we
find that it scales exponentially with NT [52]. Therefore,
we expect that any local-flip algorithm (e.g. SDk with k
subextensive in NT ) will have exponential run-time for
finding the global optimum. Having a landscape with an
exponential number of minima separated by extensive
barriers (in height and width) in the number of degrees
of freedom is one of the landmarks of spin glasses, and
leads to extremely slow mixing times [35].

This glassy control transition is analogous to replica
symmetry breaking in spin glasses and random satisfia-
bility problems [60, 61]. We verified that applying higher-
order SDk (k > 2) only slightly shifts the glass critical
point to larger T , as expected due to the presence of
large and numerous barriers [52].

Effective Classical Model.—To further evidence the
glassy character of the phase, we map the control problem
to an effective classical Ising model Heff(T ), which gov-
erns the control landscape phase transitions. By studying
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its properties, we establish a closer connection with spin-
glasses. Similar to classical Ising-type models, in which
each spin configuration comes with its energy, we assign
to every bang-bang protocol the log-fidelity Ch(T ) of be-
ing in the target state (Fig. 1.d). From the set of all
Ch(T ) values, which we refer to as the log-fidelity ‘spec-
trum’, we reconstruct an effective classical spin model:

Heff(T ) = C0(T ) +

NT∑
j=1

Gj(T )hj +
1

NT

NT∑
i 6=j

Jij(T )hihj

+
1

N2
T

NT∑
i6=j 6=k

Kijk(T )hjhjhk + . . . . (4)

Here the couplings Gj , Jij , Kijk, which can be uniquely
computed by tracing over all 2NT possible protocol con-
figurations [52], encode all the information about the con-
trol landscape [52].

For T > T
(c)
1 , we find that the effective two-body inter-

action Jij (which is non-local and antiferromagnetic) and
the one-body interaction compete, resulting in Heff(T )
being highly frustrated, i.e. a large fraction of the Jij
bonds are unsatisfied in the ground-state[52]. For larger
times, higher-order (and possibly all) nonlocal multi-
body spin interactions in Heff(T ) are required to reliably
capture the behaviour of the system in the glassy phase.
We present further evidence for these claims using an in-
dependent procedure for learning couplings based on the
RIDGE algorithm for sparse linear regression [52, 62, 63].
The long-range and multi-body nature of the couplings
is related to the dynamic origin of the state preparation
problem: causality imposes that the value of the low-
Ch(T ) protocols at time t is correlated with the values at
all previous times t′ < t in the bang-bang sequence.

Density of states.—In order to understand the under-
lying causes for the glassy phase, we examine the den-
sity of states [i.e. protocols] of Heff(T ) (DOS), obtained
by counting protocols in a small fidelity window [Fig. 4,
black line, left axis]. Starting from a protocol h∗ with
near-optimal fidelity (i.e. a low-energy local minimum of
Heff(T )), we analyze the behaviour of elementary exci-
tations (Fig. 1d), by computing the fidelity of all possi-
ble protocols obtained after flipping 1, 2 and 4 bangs in
h∗. These excitations can be classified by their ‘magne-
tization’ Mh =

∑
j(hj−h∗j ) relative to the near-optimal

protocol. Below the SD2 glass transition, T <T
(2)
c ≈2.3,

the bulk of the excitations (shaded area, right axis) is
located in a region where the DOS is much smaller than
the typical DOS. Therefore, when searching for the opti-
mal protocol, starting from an initial protocol with large
log-fidelity, finding one of the elementary excitations is
relatively easy since most of these excitations are in a re-
gion of extremely small DOS (w.r.t to the typical DOS).

In contrast, for T >T
(2)
c in the glassy phase, the bulk of

the excitations moves to a region where the DOS is large.
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FIG. 4: Normalized density of states (DOS) of Heff (black
line, left y-axis), and the distribution of the Mh = 0 and
Mh = 2-magnetized excitations (shaded, right y-axis) on both

sides of the glass critical point T
(2)
c ≈2.3 for NT = 80, L = 6.

The position of the best obtained fidelity using SD4 is marked
by the vertical dashed line.

This implies that if we miss one of the elementary exci-
tations in the search for a better protocol, it becomes
infeasible to reach h∗. From an algorithmic perspec-
tive, this suggests a transition from a sub-exponential
complexity to an at least exponential complexity in NT .
We explicitly verified that this behavior holds using ex-
act numerical computation of all protocol fidelities up to
NT ≤28 [52];

Outlook/Discussion.— Studying the properties of the
control landscape, we provided compelling evidence for
the existence of a glass-like phase in optimal ground state
manipulation of constrained quantum systems. Using t-
SNE we were able to reveal the complex geometry of
the high-dimensional control landscape, which features
multiple clusters separated by extensive barriers. We
mapped this out-of-equilibrium problem to an effective
classical Ising model with non-local and frustrated multi-
body interactions, resulting in a complicated optimal pro-
tocol configuration. Further, applying ideas from con-
densed matter physics to reveal the microscopic origin of
the putative glassy control phase, we analyzed the be-
haviour of the DOS in protocol space of the distribution
of local elementary excitations above the low log-fidelity
manifold. Our analysis suggest that the state prepara-
tion paradigm in nonintegrable many-body systems be-
longs to the class of NP-hard problems, with the optimal
protocol becoming exponentially hard to find in the glass
phase.
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The approach outlined in this work has the poten-
tial to further the understanding of quantum dynamics
away from equilibrium. It generalizes to control prob-
lems beyond state preparation, for instance minimizing
work fluctuations [64], and highlights the application of
machine learning and glass-physics methods to quantum
control tasks.
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[45] D. Battaglia, M. Kolář, and R. Zecchina, Phys. Rev. E

70, 036107 (2004).
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