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Continuous attractor neural networks generate a set of smoothly connected attractor states. In memory sys-

tems of the brain, these attractor states may represent continuous pieces of information such as spatial locations

and head directions of animals. However, during the replay of previous experiences, hippocampal neurons show

a discontinuous sequence in which discrete transitions of neural state are phase-locked with the slow-gamma

(∼30-50 Hz) oscillation. Here, we explored the underlying mechanisms of the discontinuous sequence gener-

ation. We found that a continuous attractor neural network has several phases depending on the interactions

between external input and local inhibitory feedback. The discrete-attractor-like behavior naturally emerges in

one of these phases without any discreteness assumption. We propose that the dynamics of continuous attractor

neural networks is the key to generate discontinuous state changes phase-locked to the brain rhythm.

PACS numbers: 87.19.ll, 05.40.-a, 87.19.lq

Ample evidence shows that the hippocampus performs se-

quence processing during the acquisition, consolidation and

retrieval of memory. The latter characteristic has been exten-

sively studied in spatial navigation tasks, in which hippocam-

pal neurons in awake [1] and sleep states [2, 3] replay the fir-

ing sequences that were exhibited during the preceding spatial

experiences. These replay events are internally generated by

the hippocampal circuits and believed to be part of neural pro-

cesses for memory consolidation [4–6]. On the other hand, the

hippocampus has long been thought to operate as an attractor

neural network in which episodes may be encoded into fixed-

point attractors [7], and this hypothesis also receives some

support from experiment. However, how the seemingly dif-

ferent dynamical characteristics, attractor dynamics and se-

quence generation, emerge and cooperate in memory process-

ing remain a mystery.

Recently, this question was addressed in the activity of CA1

neurons during a spatial memory task [8]. Results of this ex-

periment revealed that replay sequence during sleep, which

represents sequence of the spatial locations visited previously

by the animal, is discontinuous. Unlike smooth sequential fir-

ing during exploration in awake states, the sequence exhib-

ited abrupt jumps between the decoded locations during re-

play events. Furthermore, these jumps were phase-locked to

the slow-gamma oscillation of the local field potentials. In

contrast, the hippocampal circuit showed attractor-like behav-

ior during the replay of disconnected locations. These results

suggested that slow decoding of accurate spatial information

and fast movements between the remembered locations are al-

ternated during spatial exploration.

However, the underlying mechanisms of this oscillatory

coding remain unknown. Here, we propose a continuous at-

tractor neural network (CANN) to account for the emergence

of discretized local attractors. The CANN is a family of neural

field models that can support a set of continuously connected

attractor states, which generally form bump-shaped functions

in the space of preferred stimuli [9, 10]. The CANN mod-

els have been used to describe the tuning curves (i.e., place

fields) of hippocampal place cells [11], orientation tuning in

visual cortex [12], the direction of object movement in the

middle temporal cortex [13] and head direction in the entorhi-

nal cortex [14]. In addition, the pairwise correlation predicted

by CANN has been observed in experiment [15]. By using a

perturbative approach to the neural field dynamics of CANN

[16, 17], we demonstrate that the network model shows a

phase transition from a continuous attractor state to discon-

tinuous attractor states as the speed of an external stimulus

is increased. This transition gives a discrete-attractor-like be-

havior similar to the experimental observation.

We use the following version of a CANN model to describe

the activity state u (x, t) of neurons with preferred location x
at time t [10, 16]:

τ
du (x, t)

dt
=− u (x, t) + ρ

∫

dx′J (x, x′)u(x′, t)2B(t)−1

+ Iext (x, t) , (1)

where ρ is their density in the preferred location space and

τ is the corresponding time constant. Excitatory coupling

function between neurons at x and x′ is translational invari-

ant and given as J (x, x′) = J0√
2πa

exp[− |x− x′|2 /(2a)2],
where J0 controls the average magnitude of excitatory cou-

plings and a represents their average width. The function

B (t) = 1 + kρ
∫

dx′u (x′, t)
2

expresses a divisive inhibi-

tion [10, 18] with a positive parameter k. The larger the

value of k, the stronger the inhibition. External input to the

network is given by a Gaussian function as Iext (x, t) =

A (t) exp[− |x− zI (t)|2 /(4a2)], when the current location

of the animal is zI (t). Because external input influences

network dynamics through the component projected onto the

translational mode (∂u/∂x) of attractor states [17], the spe-

cific functional form of external input does not change the es-

sential results. We assume that Eq. (1) describes activity of

hippocampal CA1 pyramidal cells. Local excitatory connec-

tions are less prominent in CA1 compared to CA3, but CA1

pyramidal cells are not devoid of recurrent synaptic connec-

tions [19]. External input may arise from the entorhinal cortex

or CA3 [20].

To simplify the parameter dependence of the model, we per-

formed the following rescaling [17]:

u (x, t) → ũ (x, t) ≡ ρJ0u (x, t)

k → k̃ ≡ 8
√
2πak/ (J0ρ)

−1
(2)
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Figure 1. Basic response properties of CANNs. (a) In CANNs, neurons with similar preferred locations are mutually connected. Excitatory

connections have a narrower range than inhibitory connections. This architecture allows the network to support a continuous family of

stationary states. (b) Neural responses to a moving input are shown. Parameters: k̃ = 1.0, a = 0.02 m, τ = 2 ms, ṽI = vI/a = 0.15 (ms)-1

and Ã0 = 0.5 (c) The instantaneous speed of the center of the localized activity profile (upper), magnitude of the external input function

(middle) and the gamma-band oscillation of the neural field (lower) obtained by a band-pass filter (40-60 Hz) are shown (red curves) for the

entire duration of moving input. Dotted lines indicate the troughs of gamma oscillations. Parameters: same as those in (b). (d) The location of

a rat, and (e) movements across 20-ms time frames with 5-ms increments and the slow-gamma power were decoded from hippocampal activity

during replay. These panels were modified from [8] with reprint permission.

A (t) → Ã (t) ≡ ρJ0A (t) .

By this rescaling, we can express the competition between ex-

citation (J0) and inhibition (k) with the rescaled inhibition (k̃).

We first study solutions to Eq. (1) for a vanishing external

input (Ã (t) = 0). For k̃ ≥ 1, we can show that ũ (x, t) = 0 is

the only stable fixed point solution. For k̃ < 1, Eq. (1) has a

stable fixed point ũ+ (x) and an unstable fixed point ũ− (x),

where ũ± (x) =
√
8[(1±

√

1− k̃)/k̃] exp[− |x− c|2 /(4a2)]
with c being an arbitrary constant. The continuous family of

stationary states is schematically illustrated in Fig. 1(a). Now

we turn to solutions for non-vanishing input. Owing to lo-

cal excitatory connections and widely spread inhibition, net-

work activity tends to form a localized profile, even though

k̃ ≥ 1.0. A solution to Eq. (1) is presented in Fig. 1(b).

We assumed an oscillatory input within the slow-gamma band

Ã (t) = Ã0 × [sin (2πft) + 1] with the amplitude and fre-

quency of input set as Ã0 = 0.5 and f = 50 [Hz], respec-

tively. To mimic the observed replay sequence [8], we set

a = 0.02 [m], which gives a range of network activity pro-

file similar to the experimentally observed one (see Fig. 1(d)),

and moved the input at the speed of 0.003 [m(ms)-1] from

−0.8 [m] to +0.8 [m] (after an initial transient period of

100 ms). In the simulation, x ∈ [−1 m, 1 m] with a periodic

boundary condition. The evoked activity faithfully tracked the

movement of external input, exhibiting fluctuations in the am-

plitude.

To explore the biological relevance of the network be-

havior, we calculated the instantaneous speed of local-

ized activity profile, v(t) = dz(t)/dt with z(t) =
∫

xu (x, t) dx/
∫

u (x, t) dx, in the upper panel of Fig. 1(c),

which shows discrete-attractor-like behavior during tracking.

The time course of the magnitude of the external input was

shown in the middle panel for reference. We further examined

the phase locking phenomenon between the gamma rhythm of

the “local field potential" and the change of the decoded loca-

tion, where the amplitude of neural field ũ (x, t) was used to

address the “local field potential" (LFP). Time evolution of

the gamma-band power of ũ (x, t) is presented in the lower

panel of Fig. 1(c). From the two figures (upper and lower

panels in Fig. 1(c)), we can see that the peak speed of activ-

ity packet is phase locked to the troughs of gamma-band LFP

oscillation in the model. We may compare these results with

experimental observations. Figure 1(d) shows neuronal activ-

ity recorded from the rat hippocampus during replay [8]. As

in Fig. 1(b), the neuronal activity superimposed onto the de-

coded spatial locations was clearly discretized. Phase-locking

similar to that in Fig. 1(c) also occurred between rat’s move-

ment and the slow-gamma LFP oscillation (Fig. 1(e)).

At a first glance, the discretized response of the model looks

trivial due to the presence of oscillating external drive. How-

ever, as demonstrated below, this phenomenon emerges from

internal network dynamics but not from the oscillatory drive

per se. To understand how the dynamics of the continuous at-

tractor model generate discretized responses, we analyzed the

model using the perturbative method developed in [16, 17].

In this approach, we construct a perturbative solution to the

model by using a series of orthogonal functions.

For mathematical simplicity, we assume that the localized

activity profile can be approximated by a Gaussian function:

ũ (x, t) = ũ0 (t) exp[− |x− z (t)|2 /(4a2)]. Substituting this

expression into Eq. (1), rescaling the variables according to
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Figure 2. Phase-plane diagrams for different parameter settings.

Here, k̃ = 1.0 and Ã = 0.5. (a) Phase-plane diagram shows three

fixed-point solutions for ṽI = 0.07. Dashed and dot-dashed curves

indicate s̃-nullcline and ũ-nullcline, respectively. (b) Phase-plane di-

agram gives an unstable fixed point for ṽI = 0.1. (c) Phase-plane

diagram gives a stable fixed point for ṽI = 0.4. (d) Phase-plane dia-

gram yields an unstable fixed-point for ṽI = 1.2. Arrows: visualized

tendencies of nearby regions. Stable (circles) and unstable (squares)

fixed points are indicated.

Eq. (2), and considering orthogonality of functions, we have

τ
dũ0 (t)

dt
= −ũ0 (t) +

1√
2

ũ0 (t)
2

1 + 1

8
k̃ũ0 (t)

2
+ Ã (t) e−

1

8
s̃
2

,

(3)

τ
ds̃ (t)

dt
= τ ṽ − Ã (t)

ũ0 (t)
s̃e−

1

8
s̃
2

, (4)

where s̃ = (zI − z) /a and ṽ = (dz/dt) /a are the separation

and velocity of activity profile, respectively. We substitute

ṽI = (dzI/dt) /a for ṽ to examine whether the network can

stably follow the input velocity. The derivation of the above

two equations is found in the supplement material.

Let (ũ∗
0, s̃

∗) be a fixed point solution to Eqs. (3) and

(4) for constant Ã (t), namely, when the external input

is a moving Gaussian packet without oscillatory modula-

tions. Figure 2 shows the nullclines of Eqs. (3) and (4),

in which a fixed-point solution corresponds to an intersec-

tion of the nullclines. The color code indicates the angle of

(dũ0(t)/dt / ũ0(t), ds̃(t)/dt / s̃(t)) relative to the horizontal

axis in a counterclockwise direction. Four possible scenarios

exist depending on parameter values. In Fig. 2(a), three fixed

points exist, but only the solution with the smallest s̃∗ is sta-

ble. In Fig. 2(b), the value of ṽI is increased such that only a

fixed point may survive, which corresponds to the fixed point

with the largest s̃∗ in Fig. 2(a). This solution, however, is un-

stable. In Fig. 2(c), the value of ṽI is further increased and that

of ũ∗
0 is decreased, as expected from Eq. (4), making (ũ∗

0, s̃
∗)

v~  I
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Figure 3. Parameter dependence of localized activity profiles. (a)

ũ∗

0 of the fixed-point solutions to Eqs (3) and (4). (b) The value of

s̃∗ in fixed-point solutions. In (a) and (b), only the fixed-point solu-

tions with the smallest s̃∗ are presented if multiple fixed-point solu-

tions exist. (c) Real part of the eigenvalues of the linearized system

around the fixed-point solutions shown in (a) and (b). Dashed curves

in (c) and (f) show contours on which the real part vanishes. (d)

〈maxx ũ (x, t)〉
t

measured from simulations of Eq. (1). (e) 〈s̃ (t)〉
t

measured from the simulations. (f) Standard deviation of the mea-

sured s̃ (t). The circles labeled by P show the parameter values used

in Fig. 4.

a stable fixed point. In Fig. 2(d), the fixed point eventually

turns unstable and s̃ (t) diverges.

We further studied the behavior of the network by solving

Eqs. (3) and (4) in a broader range of parameter values. Fig-

ure 3(a) shows ũ∗
0 generally decreases with increases in ṽI . If,

however, 1 < k̃ . 1.5, as ṽI is increased from zero, the cor-

responding s̃∗ first increases but then decreases, taking a local

maximum at some speed (Fig. 3(b)). This shows the presence

of a parameter region in which the average separation is larger

compared to the neighboring regions. A linear stability anal-

ysis was preformed around solutions to Eqs. (3) and (4) and

the real part of the lowest eigenvalue is shown in Fig. 3(c) for

various parameter values. The fixed-point solution is unstable

in the parameter regions in which the real part is positive.

In Fig. 3(d)-(f), numerical simulations of Eq. (1) were per-

formed to confirm the above predictions of the reduced sys-

tem defined by Eqs. (3) and (4). In Fig. 3(d), the peak height

of localized activity profile 〈maxx ũ (x, t)〉t averaged over

zI (t) ∈ [−0.4 m, 0.4 m] was presented, while the temporal

average of separation 〈s̃ (t)〉 was shown in Fig. 3(e). They are

comparable to the fixed-point solutions presented in Fig. 3(a)

and (b), respectively. Instead of linear stability analysis, we

evaluated the standard deviation of s̃ (t) in Fig. 3(f). By com-

paring this and Fig. 3(c), we find that the fixed point solution

is unstable in the parameter regions where the standard devi-

ation is larger than the minimum separation between neurons

in the original model. The results indicate that the reduced

system well replicates the dynamics of the original system.

The above results on the stability of activity profiles were

derived for continuous attractor networks receiving constant

inputs. Importantly, however, we found that the networks re-
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Figure 4. Simulations with a non-oscillatory input. (a) Activity state

ũ(x, t) evolves with a non-oscillatory input, i.e., f = 0. Values of

other parameters are the same as those in Fig. 1(b) and labeled by

P in Fig. 3. (b) The instantaneous speed of the activity state profile

presented in (a). (c) The gamma-band component of maxxũ(x, t)
shown in (a). Dotted lines show the aligned troughs of the gamma-

band trace in (c)

(a) maxt maxx u~ (x, t)
-mint maxx u~ (x, t)

0.5 1

A
~
 0

0

1

v~  I

0

1

2

3

4

(b) maxt maxx u~ (x, t)
-mint maxx u~ (x, t)

10 100

f [Hz]

0

1

v~  I

0

1

2

3

4

(c) cor(v~ (t), gamma-band
of maxx u~ (x, t))

10 100

f [Hz]

0

1

v~  I

-1

0

1

Figure 5. Robustness of oscillatory responses against changes in ṽI ,

Ã0 and f . The parameter values used in Fig. 4 (circle) and and

Fig. 1(b) and (c) (triangles) are indicated. (a) [maxt,x ũ(x, t) −

mint maxx ũ(x, t)] versus Ã0 is shown during the tracking of

a constant input moving at speed ṽI . (b) [maxt,x ũ(x, t) −
mint maxx ũ(x, t)] versus f is shown during the tracking of an os-

cillatory input moving at speed ṽI and oscillating at frequency f with

magnitude Ã0 = 0.5. (c) Correlations between ṽ(t) and the gamma-

band component of maxx ũ(x, t) are presented during tracking of an

oscillatory input moving at speed ṽI and oscillating at frequency f .

Parameter values are: k̃ = 1.0 and a = 0.02 [m].

spond similarly to both constant and oscillatory inputs if the

values of some parameters are adequately replaced. Actually,

as shown in Fig. 4(a), a network receiving a constant input ex-

hibits similar discrete-attractor-like dynamics to those shown

in the same network driven by an oscillatory input (Fig. 1(b)).

In both models, the inputs had the same average magnitude,

and the driving speed ṽI and inhibition k̃ were given by the

same point P in Fig. 3. In addition, the instantaneous speed of

activity profile displays phase-locking with the gamma-band

oscillation of network activity (Fig. 4(b) and (c)). These re-

sults suggest that internal network dynamics, rather than ex-

ternal oscillatory drives, underlie the phase-locking behavior

observed in the experiment.

We further investigated the robustness of the oscillatory re-

sponses shown in Figs. 1(b), 1(c) and 4. First, we exam-

ined how the maximum amplitude maxx ũ(x, t) varies with

changes in the magnitude Ã0 and speed ṽI of constant in-

put. Figure 5(a) shows the differences between the peak and

trough of maxx ũ(x, t) during the tracking behavior. The fig-

ure shows that oscillatory responses appear in considerably

large ranges of ṽI and Ã0. Second, we examined how the

magnitude of maxx ũ(x, t) changes with the speed and fre-

quency f of oscillatory input (Fig. 5(b)). The result reveals

that the oscillatory responses emerge in a wide range of the

frequency. Note that two regimes of oscillatory responses can

be seen, which are vaguely separated around f ≈ 30 Hz. Be-

low this frequency, oscillatory responses are primarily caused

by slowly oscillating inputs, while for f & 30 Hz oscilla-

tions occur due to intrinsic network dynamics without os-

cillatory drives. In the large f limit, the network behavior

should agree with that for non-oscillatory inputs because it

can only respond to the temporal average of input. Third, we

checked the range of f in which the anti-phase locking shown

in Fig. 1(c) occurs. Correlations between the instantaneous

speed ṽ ≡ v/a and gamma-band oscillation of maxx ũ(x, t)
are negative in a broad range of f (Fig. 5(c)), implying that

the anti-phase locking behavior occur for various frequencies.

From these results, we may conclude that the qualitative be-

havior shown in Fig. 1(b) and 1(c) is not due to a particular

choice of parameter values.

The oscillatory response reported here is a result of the

competition between attractor dynamics and a moving exter-

nal input. We note that the external input needs not be oscilla-

tory because the oscillatory responses are owing to the intrin-

sic network dynamics. It was previously shown that contin-

uous attractors exist only for an adequate range of inhibition

[16, 17]. If the inhibitory feedback is too strong, only small-

sized activity packets can exist in the network. However, these

packets are unable to reflect any property of attractor dynam-

ics, such as the presence of fixed points, because recurrent

inputs from surrounding neurons are much inferior to the ex-

ternal input. Conversely, if the inhibition is too weak, excita-

tory interactions between neurons become too strong to stably

maintain the activity packets. Our results indicate that the os-

cillatory coding of spatial information with discrete-attractor-

like states [8] is possible only if the strength of inhibitory feed-

back falls into a marginal range. A testable prediction is that

these states are impaired by the partial suppression of inhibi-

tion without crucially disturbing spatial memory.

In summary, this study presents the neural mechanisms

that possibly underlie memory processing through oscilla-

tory information coding. Since the slow-gamma oscillation is

thought to play an active role in memory retrieval and consol-

idation during sleep or immobility [21–23]. How the intrinsic

network behavior may contribute to memory consolidation is

open for future studies.
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