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In forced wetting, a rapidly moving surface drags with it a thin layer of trailing fluid as it is
plunged into a second fluid bath. Using high-speed interferometry, we find characteristic structure
in the thickness of this layer with multiple thin flat triangular structures separated by much thicker
regions. These features, depending on liquid viscosity and penetration velocity, are robust and occur
in both wetting and de-wetting geometries. Their presence clearly shows the importance of motion
in the transverse direction. We present a model using the assumption that the velocity profile is
robust to thickness fluctuations that gives a good estimate of the gap thickness in the thin regions.

Introduction: A solid entrains surrounding air along
with its moving surface when it is pushed rapidly into a
liquid bath. In this process, known as “forced wetting”,
a three-phase contact line between the substrate, air and
liquid is forced to move across the surface of the solid. If
the penetration velocity is high enough, the contact-line
distorts downwards to create a pocket of air.

When the substrate velocity, U, is low, the contact
line remains approximately level with the liquid surface.
At higher velocity, the line distorts and evolves towards
a steady-state “V” shape [1-3] shown schematically in
Fig. 1a. The top row of Fig. 1b shows images, spaced
100ms apart, of the transient evolution to this shape.
The first frame shows the contact line immediately after
a planar substrate starts to move at fixed velocity into
a liquid bath; the next images show the development to-
wards the steady-state “V” shown in the last frame.

These images, taken with white light, show the lat-
eral evolution of the contact line but provide no infor-
mation about the thickness of the air gap at different
points across its surface. We obtain such information
from interference fringes, which are visible when the op-

tical path across the gap is less than the coherence length
of the light. In the bottom panel of Fig. 1b, interference
fringes appear for thicknesses less than ~ 30um. These
images reveal unexpected structure in the gap thickness
that was not visible in the top panel.

As the contact line evolves, the air gap is thick near the
edge and becomes thin and extremely flat in the center.
This flatness can be ascertained because over regions of
approximately 5mm in width there are only two fringes.
These correspond to equal-height contours, with a dif-
ference in thickness between successive bright fringes of
~ 0.32um. Once the contact line has formed the “V”
shape, the air gap continues to evolve until it reaches a
steady shape shown in the last frame; at that point the
air pocket has two very flat triangular structures that
are symmetrically placed in the upper corners of the gap
separated by an intervening thicker region.

These features are very robust. They appear regardless
of the solid material (e.g., metal or plastic) and the fluid
viscosity; they appear if the air is replaced by a second
liquid. More surprisingly, similar structures appear in
de-wetting experiments where the liquid drains from the
substrate as it is withdrawn from the bath.

-

Schematic showing the “V”-shaped steady-state contact line as viewed from the front.
A 12.7mm wide tape travels vertically into a water/glycerol mixture of
viscosity, n = 226¢P, at U = 130mm/s. Top row: Images using a white light. Bottom row: Images using red light of coherence
length 60um. Interference patterns appear where the air pocket is thinner than 60um/2 = 30um.

FIG. 1. (a)
evolution of the “V” shape spaced 100ms apart.

We measured the dependence of the gap dimensions

(b) Images during the

on the liquid viscosity, substrate width, and penetration



velocity. The absolute thickness at different points in the
gap were measured in order to characterize the three-
dimensional structure of the air pocket.

Methods: In our experiments, we used flexible My-
lar tape as the solid substrate. The tape was held ver-
tically as it was forced into (wetting) or pulled out of
(de-wetting) the bath. Vibrations and twist were min-
imized by supports located along the path of the tape.
These and the chamber walls were kept distant from the
air pocket to avoid any interactions [4, 5]. Except where
specifically stated otherwise, the tape width was 12.7mm.
In each run, the tape velocity, U, was held constant at
speeds between 50mm/s and 1000mm/s.

The liquid bath consisted of water/glycerol mixtures
whose viscosity, 7out, could be tuned between different
runs by varying the relative concentration of the compo-
nents: 26cP < 1oy < 572c¢P. In order to check whether
the structure of the gap was robust to the type of en-
trained fluid, we also replaced the air by a silicon oil of
viscosity 0.65¢P. The interfacial tension, -, and den-
sity, p, were measured for different mixtures to be be-
tween 53mN/m and 66mN/m and between 1.21g/cm3
and 1.25g/cm? respectively.

The absolute thickness, H (z, z), of the air gap at differ-
ent points on the surface (z, z), was measured using high-
speed interferometric imaging [6] from multiple wave-
lengths of light simultaneously (see Supplemental Infor-
mation) [7-9]. Once the thickness of the thin regions is
known, the thickness of the gap in the thicker regions can
be measured by counting fringes from a laser.

Role of viscosity and evolution to steady state: The
“V” shape of the steady-state contact line was quantita-
tively interpreted by Blake and Ruschak [3] in terms of a
maximum contact-line velocity Uy, with which the lig-
uid can wet the solid. When U > U,,,4:, the contact line
is forced to tilt by an angle ¢ so that the normal velocity
of the contact line does not surpass this threshold:
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FIG. 2. (a) (cos®) ™" versus velocity U for water/glycerol mix-
tures with viscosities between 26cP and 572¢P. Solid lines:
least-square-fits to Eq. 1. (b) Upmas extracted from (a), versus
Nout. Solid line: Upaz ~ n;uot‘m

Figure 2a shows (cos¢) ™! versus U for liquids of differ-
ent viscosities, 7,u¢. (Due to growing contact-line fluctu-
ations as U decreases towards U,,q, our data does not
extend below the dashed line, (cos¢)~! ~ 1.3.) Figure 2b
shows that U,,,, determined from Eq. 1 varies as

Unnag ~ 150 75£0.03, 2)

This exponent is similar to that found in earlier works [1,
2, 10-14] but is larger than the value (between 1/3 and
1/2) suggested by Marchant et al. [15].
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FIG. 3. Lateral geometry of thin structures in the air gap
versus substrate velocity, U. (a) Distance between tips, W,
versus U and (b) vertical span, L, versus U. W and L are
shown in the insets.

Structure within the steady-state air gap: As the im-
ages in the bottom row of Fig. 1(b) make clear, there
is considerable structure in the thickness of the air gap,
H(x,z). Most striking is the unexpected appearance of
two flat steady-state triangular shapes in the upper cor-
ners of the last image. Figure 3 shows the tip separation,
W, and the vertical span of the triangular regions, L, as
indicated in the insets. W appears to saturate at large
velocity, U, while the slope of L versus U increases with
increasing bath viscosity.

An average thickness of the air gap was previously
estimated to be between 0.05um and 0.9um (e.g., see
[1, 16]); in the case of a plunging liquid jet (instead
of plunging solid) it was measured to be several mi-
crons [17]. No structure within the gap was reported.
However, Fig. 4(a) shows two profiles along the z direc-
tion of H(z, z) obtained from the multi-wavelength inter-
ference method described in Supplemental Information.
The profiles are far from uniform; using only the average
value is misleading since it misses the complex structure.

Figure 4(b) shows Hyp;n, the absolute gap thickness
in the center of the triangular regions, versus U. These
regions are extremely flat with a height variation of only
AHpin =~ 0.1 ~ 0.7um depending on the outer fluid vis-
cosity. As one might naively expect, Hyp;y increases with
increasing penetration velocity. Each data set starts only
when U > Uppq, (from Fig. 2(b)); thus as 7y, increases,
the data range shifts to lower velocities.
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FIG. 4. Thickness of air gap. (a) Profiles of the gap thickness,
as shown in the schematic (for U ~ 120mm/s; nous & 200cP)
along the thin triangular regions (red) and the center of the
air gap where the thickness is maximum (blue). The solid
lines are measurements and dashed lines are interpolations.
Note the extremely thin flat section of the profile through the
triangular region. (b) Thickness of the thin triangular regions
measured at their centers, Hipin, versus U. Lines show fits
for Hipin o< Ax U“. Upper inset: a versus 7o,+. The average
< a >= 0.46 £ 0.03. Lower inset: A versus 7)oyu:. Line shows
fit A < n,,%*. (c) Data collapsed to Eq. 8. (d) Thickness at

out

thickest point of the gap, Hmaz, versus U.

The data for different values of 7,,: do mnot fall on
top of one another but splay out and are roughly par-
allel to one another. We fit each data set to the form:
Hipin = A« U®. The insets in Fig. 4(b) show the least-
square fits of the parameters o and A versus 7),,¢. The
upper inset shows that the average a = 0.46 £ 0.03.
This is significantly different from o = 2/3 given by the
Landau-Levich-Derjaguin theory for the deposition of a
liquid layer on a substrate pulled out of a bath [18, 19].
The lower inset shows A o nfut with best-fit exponent
B = —0.43 +0.07 (solid line). This suggests:

0.46+0.03,—0.431+0.07
chin x U Mo . (3)

ut

In order to understand this behavior, we model the air
flow within the gap. Because of the stationary contact

line, the total flux of air must be zero; any air that is
entrained by the substrate must return to the surface.
This is different from the case of deposition without a
contact line [18, 19].

Huh & Scriven [20] treated the case where there is no
lateral flow so that the geometry is a two-dimensional
wedge with a fluid-substrate contact angle §. However,
in forced wetting, with the “V” shape, there is clearly
transverse flow. The central, thick part of the gap can ac-
commodate the return of the entrained air so that in the
thin triangular regions there need not be any return flow.
In those regions, the entrained air can escape by flowing
downwards towards the contact line and then sideways
towards the central thicker part of the gap. This is dif-
ferent from the flow proposed by Severtson & Aidun [21]
who did not observe the thin triangular regions.

We assume that the velocity of the liquid/air interface,
Uy, does not vary significantly across the surface and can
be approximated by the two-dimensional results of Huh
& Scriven:

U =CU ~ (1 - D(G)%>U (4)

nout
where 7;,, is the inner fluid viscosity (air in our case).
The first order expansion of ¢ in terms of 7, /7oy is valid
near 6 &~ 3° over our experimental range of 1y, /Nout<< 1.
(See Supplemental Information for more details).

In the thin regions, where the liquid interface is nearly
vertical, the buoyancy force is balanced by the viscous
forces in the inner fluid: 7;,0%u(y)/0y? = Apg where y is
in the horizontal direction perpendicular to the substrate
surface, flow is in the z direction(see Fig. 4(a)) and Apg
is the buoyancy force. Using the boundary conditions
at the substrate u(y = 0) = U and at the liquid/liquid
interface u(y = Hypipn) = Ur we find:

Apg ,
=22 py4U 5
“= g Y+ (5)
. (1-QU  Apg
with B = ——%— + Hipin. 6
chin 2771'n th ( )

Given an arbitrary Hyp, there is a solution satisfying
both boundary conditions. B(Hyj;,,) determines the flow
profile. We note that infinitesimal fluctuations of Hypiy
changes B except at its extremum: dB/dHyp;, = 0. For
this solution, not only is B independent of Hyp;p, but
the profile has zero slope, Ou/0y = 0 at the fluid/fluid
interface (see Supplemental Information); fluctuations in
Hypip only minimally perturb the flow in the gap. We
argue that the system selects this solution because it
is the most robust and invariant to such fluctuations

that would otherwise disrupt the flow profile. Setting
dB/dH,pin = 0 gives:
1
Hinin = (201 - 020 @
Apg



We note that this is the same solution as is obtained by
minimizing the total dissipation in the air in the thin
part of the gap: Dgiss fOchi" Nin(0u/0y)%dy (see Sup-
plemental Information for more discussion).

Inserting Eq. 4 for ¢ leads to:

A characteristic length scale (1;,U/Apg)'/? emerges and

is independent of the interfacial tension . [22]

Comparing Eq. 8 to our data in Fig. 4(c) shows ex-
cellent agreement with D(0) ~ 193, corresponding to
0 = 2.7°. To see if § = 2.7° is reasonable in our ex-
periment, we measure H,,,;, the maximum thickness of
the pocket near the center of the “V” shape. Figure 4(d)
shows that H,,q. is typically ~ 100um, which is more
than an order of magnitude larger than Hip;,, and has
large fluctuations. From H,,,, and the dimensions of
the “V” shape, we estimate 6 as the average slope of the
overall pocket to be between 1° and 4°. Alternatively,
the local slope at the contact line, estimated from the in-
terpolations in Fig 4(a), gives a consistent value 6 ~ 3.0°.
Thus, this model for the air flow in the thin regions is in
quantitative agreement with our data.

When the substrate width is varied, the number of thin
regions in the air gap varies but leaves the distance, W,
between them roughly constant. This suggests that the
saturation width shown in Fig. 3(a) is independent of the
substrate width. Figure 5(a) shows an image of such an
entrained layer for a 25.4mm wide tape (i.e., twice as
wide as was used in the data shown above) with more
thin-thick alternations across the tape surface. Similar
thin triangles appear if the air is replaced by another
fluid as shown in Fig. 5(b) where a 12.7mm tape moves
between a 0.65¢P silicone oil and a 60cP water/glycerol
mixture. Two thin triangular regions appear in the up-
per corners of the “V”. If we reverse the direction of U,
so that the solid emerges from the bath and the liquid
de-wets the substrate, a liquid film forms with three thin
regions (now near the bottom) as shown in Fig. 5(c).
Rim-like structure behind the contact line in the longi-
tudinal direction was previously seen in de-wetting [23—
26], but no transverse thickness modulation was reported.
As with forced wetting, increasing the substrate width
produces more thin-thick alternations while leaving the
distance W between thin parts roughly constant. Thus
these thin triangular regions are a robust feature under
both wetting and de-wetting conditions.

The scalings we found for wetting need not apply to
de-wetting because the expansion in Eq. 4 is generally
not valid when 7, /1wt > 1. However, our study sug-
gests that the presence of a contact line may affect the
interfacial velocity even in de-wetting where the Landau-
Levich-Derjaguin theory had been assumed to hold.

Summary: We have found an unexpected characteris-

(@)

FIG. 5. Robustness of structure for wetting and de-wetting
geometries as shown in schematics. (a) A wide 25.4mm tape
moving from air into an 150cP water/glycerol bath show-
ing four thin regions. (b) A 0.65¢P silicone oil (replacing
air) above a 60cP water/glycerol mixture. A tape of width
12.7mm shows two thin triangular regions. (c) A tape of
width 25.4mm pulled out of a water bath into air shows three
thin regions. Gray scale inverted for clarity in (a) and (b).

tic entrained layer in forced-wetting and de-wetting ex-
periments. This structure, consisting of flat thin sections
alternating with thick pockets, is stable and is controlled
by viscosity contrast between the inner and outer fluids,
the penetration velocity and width of the substrate.

For thin film problems such as gravitational flows, lig-
uid films in rotating cylinders (i.e., printer’s instability),
spinning drops and circular hydraulic jumps, the instabil-
ity along the direction perpendicular to the general mo-
tion of the fluid has been observed and analyzed [27-33].
On the other hand, many attempts to understand wet-
ting ignore motion transverse to the velocity of the sub-
strate [34]. Such a simplification reduces the problem to a
two-dimensional geometry. While effective in describing
the onset of the forced-wetting transition [24, 25, 35-39],
such analyses exclude the three-dimensional structures
that emerge at later stages. Our experiments show that
a pure two-dimensional analysis is no longer adequate in
the steady state. The persistent thin triangular gaps sep-
arated by a thick region, reflects the nonuniformity of the
backflow of the entrained fluid. This suggests that a lat-
eral instability associated with forced wetting disrupts
the original approximately uniform flow field. Further
modeling is necessary to understand the persistence of
these structures. Our argument that assumes the veloc-
ity profile is insensitive to thickness fluctuations gives a
surprisingly good estimate for the gap thickness in the
thin regions.
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