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We investigate the electronic structure of the flat bands induced by moiré superlattices and electric fields in
nearly aligned ABC trilayer graphene-boron nitride interfaces where Coulomb effects can lead to correlated
gapped phases. Our calculations indicate that valley-spin resolved isolated superlattice flat bands that carry a
finite Chern number C = 3 proportional to layer number can appear near charge neutrality for appropriate per-
pendicular electric fields and twist angles. When the degeneracy of the bands is lifted by Coulomb interactions
these topological bands can lead to anomalous quantum Hall phases that embody orbital and spin magnetism.
Narrow bandwidths of ∼ 10 meV achievable for a continuous range of twist angles θ . 0.6◦ with moderate
interlayer potential differences of ∼50 meV make the TLG/BN systems a promising platform for the study of
electric-field tunable Coulomb interaction driven spontaneous Hall phases.

PACS numbers: 73.22.Pr, 71.20.Gj,31.15.aq

Generation of moiré superlattices in graphene and other 2D
materials by forming van der Waals interfaces has emerged
as an efficient route to tailor high quality artificial band struc-
tures [1–3]. In particular, the periodic moiré patterns in the
length scale of a few tens of nanometers that arise due to small
lattice constant mismatch or twist angles with the substrate
give rise to moiré mini Brillouin zones whose zone corners
are at energy ranges accessible by conventional field effects
in gated transistor devices [4–10]. The interlayer coupling
become effectively strong in the limit of long moiré pattern
periods due to non-perturbative coupling between the super-
lattice zone folded moiré bands [4, 5], which are sugges-
tive that flat bands can routinely form in the limit of long
moiré pattern periods for a variety of 2D material combina-
tions including twisted bilayer graphene and transition metal
dichalcogenides heterojunctions [11–13]. Recent experiments
have shown resistance peaks as a function of carrier doping
indicative of Mott phases in twisted bilayer graphene at the
first magic twist angle [14, 15] and in ABC trilayer graphene
(TLG) nearly aligned with hexagonal boron nitride (BN) [16]
when the Fermi energy is brought near the superlattice flat
bands (SFB). In this work we carry out an analysis of the SFB
in TLG/BN showing that they are generally topological bands,
i. e. have finite Chern numbers, and the lifting of the valley-
spin degeneracy by Coulomb interaction driven gaps of these
Chern flat bands (CFB) can give rise to quantum anomalous
Hall phases with orbital and spin magnetism even in the ab-
sence of an external magnetic field.

Model Hamiltonian− The model Hamiltonian for ABC
stacked TLG is based on the low energy model for trilayer
graphene with the band parameters obtained from density
functional theory local density approximation (LDA) [17–19].
We represent the Hamiltonian acting in the basis of the low
energy sites A for bottom and B for top layers. Each band is
four-fold degenerate with two-fold degeneracy in the principal
valleys (K,K′) labeled with ν =±1, and two-fold degeneracy
in real spin (↑,↓) labeled with s = ±1. We label the lowest
valence and conduction (h,e) bands through b =±1. The low

energy Hamiltonian for a rhombohedral N-layer graphene is
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where π = (ν px + ipy). We will discuss our results for ν = 1
principal valley K unless stated otherwise. The parameter
∆ represents an adjustable interlayer potential difference be-
tween the top and bottom layers that include the effects of a
perpendicular electric field and its screening. In a TLG with
N = 3 layers we model the remote hopping term corrections
through
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The effective hopping parameters are t0 = −2.62 eV, t1 =
0.358 eV, t2 =−0.0083 eV, t3 = 0.293 eV and t4 =−0.144 eV
[19, 20], where the associated velocities are defined as υm =√

3a |tm|/2h̄ with a = 2.46 Å the lattice constant of graphene.
The diagonal terms ∆′ = 0.0122 eV, and ∆′′ = 0.0095 eV are
used to provide an accurate fit for the LDA bands. The moiré
patterns have a period `M ' a/(ε2 + θ)1/2 that depends on
ε = (a− aBN)/aBN the relative lattice constant mismatch be-
tween graphene and BN, and the twist angle θ . The moiré
potential generated in graphene due to BN is given by

HM
ξ=±1(~r) =V M

A/B(~r) = 2CA/BRe
[
eiφA/B f (~r)

] (ξ σz +1)
2

(3)

where the moiré parameters are CA = −14.88 meV, φA =
50.19◦ and CB = 12.09 meV, φB = −46.64◦ [4, 23], and
the auxiliary function f (~r) = ∑

6
m=1 ei~Gm·~r(1 + (−1)m)/2 is

expressed using the six moiré reciprocal lattice ~Gm=1...6 =
R̂2π(m−1)/3~G1 successively rotated by sixty degrees where
~G1 = (0,4π/(

√
3`M)). Two possible alignment potentials be-

tween TLG and BN labeled by ξ = ±1 that perturb the low
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FIG. 1. (Color online) a. The band structure of ABC-TLG for zero
twist angle near charge neutrality in the folded zones representation
subject to V M

A = HM
ξ=1 moiré patterns and interlayer potential differ-

ences of ∆ = 10 meV that give rise to flat Chern bands with C = 3
represented in red and C = 0 trivial band represented in blue. b. The
Berry curvatures for the valence and conduction band structures of
panel (a) where we see Berry curvature hotspots near the trigonal
warping band edges and mBZ zone boundaries that add up in the
Chern band. In the trivial band we see sharp peaks with opposite
Berry curvatures mainly at the mBZ that cancel out.

energy A (bottom) or B (top) sites in graphene contacting BN
give rise to different band structures.

Topological flat bands in TLG/BN superlattices− The pres-
ence of moiré superlattices can produce avoided gaps at the
moiré mini Brilloun zone (mBZ) boundaries [21, 22, 24] while
an additional gap at the primary Dirac point would isolate
the low energy bands near charge neutrality [16, 23, 25, 26].
Because the low energy bands in ABC trilayers are less
dispersive than those of single or bilayer graphene, they
are particularly suitable for the efficient isolation and nar-
rowing of the low energy bands by electric fields that en-
hance both the primary and secondary gaps [16]. Here,
we discuss how the gaps opened by perpendicular electric
fields lead to Berry curvatures in the isolated flat bands of
TLG/BN and can turn them into topological Chern bands
with a quantized Hall effect. The Berry curvature for
the nth band can be calculated using the standard formula
Ωn(~k) = −2∑n′ 6=n Im

[
〈un| ∂H

∂kx
|un′〉〈un′ | ∂H

∂ky
|un〉/(En′ −En)

2
]

[40] where for every k-point we take sums through all the
neighboring n′ bands, the |un〉 are the moiré superlattice
Bloch states and En are the eigenvalues. The Chern num-
ber of the nth band C = Cν ,s,N,ξ ,b calculated through C =∫

mBZ d2~k Ωn(~k)/(2π) assumes implicit indices. In Fig. 1 we
can observe the Berry curvature hotspots near the primary and
secondary gaps with larger Chern number weights.

Our numerical calculations for TLG/BN predict the Chern
numbers C =±3 for the CFBs depending on system parame-
ters. We have verified up to trilayers that

C = Nνξ δsgn(∆)·ξ ,b (4)

in an N-chiral graphene two dimensional electron gas
(2DEG), where the Chern bands are found for either the va-
lence or conduction bands depending on applied electric field
sign and moiré pattern potential. In Fig. 2 we show that the
calculated Chern numbers are quantized for a wide range of
∆ values for valence and conduction bands of TLG/BN and
BLG/BN. In particular we find that either the conduction or
valence SFB near charge neutrality becomes a Chern band
as soon as ∆ opens a gap at the primary Dirac point. This
behavior can be understood if we consider that a rhombohe-
dral N-layer graphene [27] develops in the limit of small ∆

a primary Chern weight wP ∼ sgn(∆)bν N/2 near each val-
ley whose sign depends on sgn(∆), the hole or electron band
character b = ±1, as well as valley ν = ±1 [28, 29, 33, 35].
In the absence of secondary gaps due to moire patterns the K
and K′ principal valleys are mutually connected and the valley
Chern numbers identified as Chern weights wP near each val-
ley are not protected topological numbers. Nevertheless, they
give an intuitive idea about the Hall conductivity dynamics
near the chiral 2DEG band edges and are useful for count-
ing the number of zero-line modes in the valley Hall domain
walls [31–38]. The situation is quite different when primary
and secondary gaps are simultaneously present near the mBZ
boundaries because the Chern weights sum Ce/h =we/h

P +we/h
S

needs to add up to a zero or finite integer value in each isolated
band [39], where we

S or wh
S are the secondary Chern weights

for electron and hole bands. The values of we/h
S depend on

the moiré pattern that generate the avoided secondary gaps,
as evidenced by the fact that different moiré potentials V M

A
or V M

B give rise to flat bands with different Chern numbers.
The abrupt change in the band Chern number with the sign
of ∆ can be related with the sign changes of wP. Considering
that wh

P = −we
P for electrons and holes in the limit |∆| � 1

we conclude that the secondary weights should initially be
equal we

S = wh
S, see Fig. 2, while unequal electron-hole sec-

ondary Chern weights we
S 6= wh

S might be achievable using
different moiré and Hamiltonian parameters. For increasing
∆ the primary Chern weights are progressively pushed from
the vicinity of Γ̃ towards the mBZ boundaries closer to the
location of the secondary weights we/h

S while maintaining a
constant Chern number in the isolated bands. Conclusions
similar to our analysis in TLG/BN could be expected in other
rhombohedral-multilayer graphene N-chiral 2DEGs, although
the remote hopping terms in the band Hamitonian are impor-
tant to properly account for the flatband dispersions and the
secondary gaps. The Figs. S1-S2 in the Supplemental material
illustrates the Chern weights in the mBZ from small to large
∆ in minimal N-chiral multilayer graphene with N=1,2,3.

Field-dependent bandwiths and localization- The external
electric field strength modulates the size of the primary band
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FIG. 2. (Color online) a. Chern numbers for the valence and conduction flat bands for aligned TLG on BN for the bands in Eqs. 1-2, bilayer
on BN using HR

2 from Ref. 20 and corresponding minimal HR
ξ
= 0 models, calculated using a total of 18361 k-points in the mBZ. An abrupt

transition happens when the sign of ∆ changes near zero field. b. Schematic illustration of the Chern weights near Γ̃ and mBZ boundaries in
the limit of |∆| � 1 that add up into an integer Ce/h = we/h

P +we/h
S , where we

P =−wh
P and we

S = wh
S so that either the electron or hole band has

a finite Chern number. c. Bandwidth phase diagram for the valence and conduction bands as a function of interlayer potential difference ∆

and twist angle θ calculated from the difference between the maximum and minimum eigenvalue within a band. d. Local stacking and energy
dependent LDOS and DOS manifesting the localization of flatband wavefunctions.

gap near Γ̃ which impacts directly the shape of the low en-
ergy SFB and their optimum flatness will depend on field di-
rection and strength. In Fig. 2 we represent a colormap that
summarizes the evolution of the bandwidth of the SFB as a
function of electric field and twist angle quantified through the
difference between the maximum and minimum energy values
within a given band. We can observe that for every given twist
angle there is often an optimum interlayer potential difference
that maximizes the band flatness either for positive and nega-
tive field directions, highlighting the electron-hole asymmetry
inherent in TLG/BN, and that the overall flatness does not al-
ways grow monotonically with increasing electric field mag-
nitude. Increasing ∆ to appropriately large values will favor
the onset of Coulomb interaction driven gaps by increasing the
separation of the SFB with neighboring energy bands and re-
ducing its bandwidth. The parameter space of ∆ and θ where
Ueff/W & 1 is favorable for the onset of ordered phases can
be found in Fig. S4 in the supplemental material. In addition
to the electric field magnitude and direction, the relative twist
angle in the system has an impact in the flatness and energy lo-
cation of the SFB. Introducing a finite twist angle is expected
to widen the moiré bands due to the increase in the size of the
mBZ in reciprocal space for reduced moiré real space periods.
However, for relatively small twist angle values of up to ∼ 1◦

the moiré pattern periods are still ∼10 nm and the enhanced
suppression of achievable bandwidth through external electric
fields can sufficiently compensate for this bandwidth increase
due to rotation. Direct information on the band flatness is re-
flected in the density of states (DOS) plots as a function of
energy allowing to find the energy regions where Coulomb
correlations are expected to be stronger. The local density
of states (LDOS) plots for every local stacking configuration
also provides insights on the electron localization properties
of the SFB electrons in real space, see Fig. 2. Charge and
spin density modulations are expected to take place mainly
around the LDOS peaks when the degeneracy of the bands is
lifted due to Coulomb interactions. The LDOS plots provide

valuable information for guiding scanning probe microscopy
experiments that search for flat band signatures.

Spontaneous quantum Hall phases− Filling of nontrivial
Chern bands will lead to an associated quantum Hall effect
that should be observable in transport experiments. An inter-
esting scenario is found in partially filled CFB when valley
and spin degeneracy is lifted by Coulomb interactions giv-
ing rise to a variety of spontaneous quantum Hall phases.
We take as a working assumption that the interaction driven
gapped states at 1/4, 1/2, 3/4 partial filling of the flat bands
will develop into spin-collinear and valley-collinear phases
where each valley-spin flavor can be filled sequentially. In the
Hartree-Fock approximation it is reasonable to assume that
same spin polarization will be preferred over non-collinear
spin states as in conventional quantum Hall ferromagnetism of
Landau levels [41], while valley polarized phases can be pre-
ferred due to momentum space exchange condensation over
valley-coherent phases with two partially filled valleys [42].
We represent Coulomb interaction driven gaps through rigid
shifts proportional to λ in the CFB energies through a func-
tion g(ν ,s) to classify the different possible states assum-
ing any of them are possible. We will follow a classifica-
tion scheme closely similar to the four valley-spin compo-
nents of N-chiral multilayer graphene in Refs. [29, 30], in
our case facilitated by the fact that the quantum valley Hall
effect is proportional to CFB filling. In Fig. 3 we illustrate
the example of b = 1, ξ = 1, ∆ > 0 case corresponding to
the top panel of Fig. 1 a representative selection of quantum
Hall ground states also summarized in Table I. At charge neu-
trality when all CFB are filled at filling 1 we have a valley
Hall state where the charge Hall conductivity summed over
all occupied flavors totals to zero the charge Hall conduc-
tivity is σ tot

H = ∑i σ i
H = 0. The cases of 1/4 and 3/4 filling

can be pictured through selective filling/emptying of a given
(ν ′,s′) band using shifts of g(ν ,s) = λ (1−2δν ′ν δs′s) and
λ (2δν ′ν δs′s−1) respectively. These are interesting cases with
σ tot

H = ±Ne2/h charge Hall conductivity where we have si-
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FIG. 3. (Color online) For the valence flat bands associated with
∆ > 0 and ξ = 1 moiré potentials we schematically represent how
the occupation of valley ν = (K,K′) and spin s= (↑,↓) resolved CFB
contributes towards the generation of orbital and spin magnetism of
different signs. Different band occupations can be pictured by shift-
ing the band energies by a g(ν ,s) function. Four different configu-
rations of valley spin are possible for 1/4, 3/4 filling (b.-c.), and two
per each 1/2 filling represented (d.-f.). The total charge Hall conduc-
tivity σ tot

H = ∑i σ i
H of the bands is contributed by σ i

H = Cie2/h for
each occupied valley-spin flavor i where Ci =Nνξ δsgn(∆)·ξ ,b, and the
valley Hall conductivity is proportional to filling. A variety of spon-
taneous quantum anomalous, valley and spin Hall effects should be
expected when interaction driven gaps open for 1/4, 1/2, 3/4 filling
of the CFB. In particular 1/4 and 3/4 fillings are found to simultane-
ously have spin and orbital magnetism.

TABLE I. Summary of the Chern flat band configurations (1 for oc-
cupied, 0 for unoccupied) and corresponding charge, spin, and val-
ley Hall conductivities (in e2/h units) and insulator types: quantum
anomalous Hall (QAH), spin Hall (QSH), valley Hall (QVH), and
spin polarized (SP). The layer number N = 3 is equal to the flatband
Chern number magnitude in TLG/BN.

Fig. K ↑ K ↓ K′ ↑ K′ ↓ σ (CH) σ (SH) σ (VH) Insulator

3(a) 1 1 1 1 0 0 4N QVH

3(b) 1 0 0 0 N 0 N QAH, SP, QVH

3(c) 1 1 1 0 N −N 3N QAH, QSH, SP, QVH

3(d) 1 0 0 1 0 2N 2N QSH, QVH

3(e) 1 0 1 0 0 0 2N SP, QVH

3(f) 1 1 0 0 2N 0 2N QAH, QVH

multaneously a quantum anomalous and spin Hall effect. For
the 1/2 filling when two CFB are filled we have a greater va-
riety of quantum Hall ground states. One of the possibilities
is the quantum anomalous Hall phase where two equal ν ′ val-
ley CFBs are filled. The shift functions can then be modeled

through g(ν ,s) = λ (1− 2δν ′ν) and the charge Hall conduc-
tivity is σ tot

H = 2Nν ′e2/h. The remaining two scenarios have
Hall conductivity σ tot

H = 0, in the case where the same spin s′

are polarized and are modeled through g(ν ,s) = λ (1−2δs′s)
shifts, and the quantum spin phase can be modeled through
g(ν ,s) = ±λνs shifts depending on the relative signs of the
occupied valley-spin indices.

Discussions− In this work we have analyzed the topologi-
cal character of the superlattice flat bands (SFB) in ABC tri-
layer graphene-hexagonal boron nitride superlattices where
signatures of gate tunable Mott gaps have been observed re-
cently in experiments [16]. Our analysis indicates that topo-
logical flat bands with Chern number C = ±3 will form ei-
ther for electrons or holes depending on the electric field sign
and moiré potential. This scenario makes it possible to study
Coulomb interaction driven ordered phases in zero and finite
Chern number flatbands within the same device by modifying
the carrier density from electrons to holes, making this system
an interesting platform for exploring the interplay of correla-
tion physics with topological order. Band gap openings for
partial filling of the flat bands indicate that a selective occupa-
tion of Chern flat bands (CFB) of different valley-spin flavors
should be possible. Assuming valley-spin collinear ground
states of these partially filled CFB, different types of spon-
taneous quantum Hall phases with orbital and spin magneti-
zation can be expected, with total charge Hall conductivities
of zero or σ tot

H = ±6e2/h expected for 1/2 filling, whereas
σ tot

H = ±3e2/h that is always finite is expected for 1/4 or 3/4
filling. From a device application point of view, one important
advantage of the field tunable gapped Dirac materials is that
the bandwidth variations of the SFB are less sensitive to twist
angle compared to twisted bilayer graphene where a precise
twist angle control is required.
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