
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Kinetic Simulations of Magnetic Reconnection in Partially
Ionized Plasmas

J. Jara-Almonte, H. Ji, J. Yoo, M. Yamada, W. Fox, and W. Daughton
Phys. Rev. Lett. 122, 015101 — Published  9 January 2019

DOI: 10.1103/PhysRevLett.122.015101

http://dx.doi.org/10.1103/PhysRevLett.122.015101


Kinetic Simulations of Magnetic Reconnection in Partially

Ionized Plasmas

J. Jara-Almonte, H. Ji, J. Yoo, M. Yamada, and W. Fox

Princeton Plasma Physics Laboratory,

Princeton, New Jersey 08543, USA

W. Daughton

Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

(Dated: December 5, 2018)

Abstract

Fast magnetic reconnection occurs in nearly all natural and laboratory plasmas and rapidly

releases stored magnetic energy. Although commonly studied in fully ionized plasmas, if and when

fast reconnection can occur in partially ionized plasmas, such as the interstellar medium or solar

chromosphere, is not well understood. This Letter presents the first fully kinetic particle-in-cell

simulations of partially ionized reconnection and demonstrates that fast reconnection can occur in

partially ionized systems. In the simulations, the transition to fast reconnection occurs when the

current sheet width thins below the ion-inertial length in contrast to previous analytic predictions.

The peak reconnection rate is ≥ 0.08 when normalized to the bulk Alfvén speed (including both

ion and neutral mass), consistent with previous experimental results. However when the bulk

Alfvén speed falls below the neutral sound speed, the rate becomes system size dependent. The

normalized inflow velocity is ionization fraction dependent, which is shown to be a result of neutral

momentum transport. A model for the inflow is developed which agrees well with the simulation

results.
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Magnetic reconnection is a ubiquitous process occurring in nearly all magnetized plasmas,

during which the global magnetic field topology changes, transferring magnetic energy to

plasma particles [1]. Due to the rapid release of stored energy, reconnection has been invoked

to explain energetic events observed in natural and laboratory plasmas, and has motivated

decades of active research. The majority of this work has focused on hot, fully ionized

plasmas, as found in the Earth’s magnetosphere or the solar corona, yet many space and

astrophysical environments are only partially ionized.

For example, the solar chromosphere is relatively cool, dense, and weakly ionized, but

contains many classes of dynamical events thought to be driven by reconnection, such as UV

bursts[2, 3], jets[4, 5], spicules[6, 7], or transition region explosive events[8]. The importance

of partially ionized reconnection to chromospheric physics has motivated several studies

of partially ionized reconnection[9–20]. However, a major open question is under what

conditions fast (i.e., Alfvénic and resistivity independent) reconnection can occur.

Analytic estimates have predicted a transition to fast, ionization fraction (χ ≡ ni/(ni +

nn)) independent reconnection when the current sheet thins below the hybrid inertial length,

diχ
−1/2 where di ≡ c/ωpi is the ion inertial length[13]. Heuristically, this is derived by

assuming ions and neutrals are perfectly coupled, replacing the physical ion mass with the

effective ion mass, mi → mi/χ, and scaling results from the fully-ionized case (e.g., Birn

et al. [21]).

These predictions have been tested with mixed results. Experiments report Alfvénic,

χ-dependent reconnection [15], while in the absence of plasmoids, fluid simulations report

slow reconnection and have concluded that the Hall effect does not significantly modify

the reconnection rate[18, 19]. To reconcile these results, it was suggested that present

reconnection experiments are too small to observe the scale expansion, di → diχ
−1/2 [15],

but no theory has been developed to explain fluid simulations [19].

In this Letter, we perform the first fully kinetic particle-in-cell simulations of partially

ionized reconnection and demonstrate that fast reconnection can occur. Unlike fluid models,

kinetic simulations provide a first-principles treatment of dissipation and transport physics

(e.g., resistivity, viscosity, heat flux) valid across both collisional and collisionless regimes.

Here, only the semi-collisionless regime, where the ion-neutral mean-free-path for momen-

tum exchange λin is comparable to di and electrons are weakly collisional, νei � Ωe, is

studied. Electron-neutral collisions are neglected as the Coulomb collision rate, νei, is signif-
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Series δ0/di Lx/di Lz/di nx nz Particles

A 2.5 50 100 790 1560 1.0 ×109

B 1 50 100 790 1560 3.5 ×109

C 1 100 200 1580 3040 1.5 ×109

D 1 200 400 3162 6240 1.7 ×1010

TABLE I. Simulation parameters. All cases have mi/me = 40, ωpe/Ωe = 2, c/vthe = 4, νmom
ei /Ωe =√

me/miν
mom
ii /Ωi = 0.02, νmom

in /Ωi = 1, and νviscnn /Ωi = 0.25 corresponding to the mean-free-paths

λmom
ei /di = λmom

ii /di = 4, λmom
in /di = 0.5, and λviscnn /di = 2. For each Series, multiple cases are

performed with varying χ (0.01 < χ0 ≤ 1).
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FIG. 1. Example of a partially ionized reconnection simulation from Series D with χ0 = 0.1 showing

the central region at time tΩi0 = 300. a) The out-of-plane current density is shown in color and

solid lines are magnetic flux surfaces b) the out-of-plane magnetic field in color along with contours

of the compressible neutral stream-function (dashed-lines). For this case, simulation parameters

map to the dimensional parameters ne = 1.5× 1012 cm−3, B = 20G, and Lz = 400di0 = 150m.

icantly faster than any electron-neutral collision rate. This regime is compatible with both

laboratory experiments [15] and the upper solar chromosphere[22]. In these simulations,

the transition to fast reconnection occurs when the current sheet thins below di. For large

neutral beta (ratio of neutral to magnetic field pressures, βn = 8πPn/B
2) the global recon-

nection rate is system size dependent, but is ≥ 0.08 when normalized by the bulk Alfvén

speed. The inflow velocity is χ-dependent due to neutral viscous momentum transport, for
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which a semi-empirical model is developed.

Here we use the explicit, electromagnetic particle-in-cell code VPIC [23]. Coulomb colli-

sions are included using the Takizuka-Abe model [24, 25]. Neutrals are evolved kinetically

and collisional interactions are included using a Monte-Carlo collision model [26] described

in the Supplemental Material[27]. The energy-dependent differential cross-sections used are

based on Helium atoms and accurately reproduce measured transport parameters[28, 29].

Only elastic collisions are modeled as inelastic processes (e.g., radiation, ionization, recom-

bination) are estimated to be unimportant for the parameters studied.

The initial setup is an anti-parallel Harris sheet with a uniform neutral background.

The initial magnetic field, plasma, and neutral density are given by Bz = B0 tanh(x/δ),

ne = ni = nb + n0sech2(x/δ), and nn = nb(1 − χ0)/χ0. This is not an exact equilibrium

but relaxes over a few collision times. All species start with the same initial temperature

T0 and the background plasma density is nb = 0.3n0 corresponding to an upstream β ≡
8πne(Te+Ti)/B

2 = 0.6. Cross sections are scaled so T0 ∼ 2eV , but the only process sensitive

to absolute temperature is the neutral viscosity, νs ≈ 0.75vA0di0. To seed reconnection, a

long-wavelength perturbation is imposed with Ay = δB(Lz/2π) cos(πx/Lx) cos(2πz/Lz) and

δB = 0.0025B0. An example case is shown in figure 1 and demonstrates the X-line topology

and Hall quadrupolar fields typically associated with fast reconnection.

Numerical and physical parameters are listed in Table I. Neutral macroparticles have a

larger statistical weight than plasma particles, wi = we = wnχ0/(1 − χ0) and the collision

algorithms are applied every 5 timesteps (0.7Ω−1
e ). The use of unequal weights has been

checked against equal weights at χ0 = 0.1 with negligible difference.

The collisional-collisionless transition has been predicted to occur when the current-sheet

thins below the hybrid inertial scale, diχ
1/2 [13], however previous two-fluid simulations have

not seen this transition[18, 19]. To test this, we follow the approach of Daughton et al. [24]

and simulations with current sheets initially thicker than diχ
1/2 are performed.

The global reconnection rate is computed as R = cEy/BvA where Ey is evaluated at

the X-point and BvA is evaluated 25di0 upstream. In this Letter, vA = B/(4πmini)
1/2 is

the ion Alfvén speed and does not include neutral density. Figure 2(a) shows this rate

weighted by χ−1/4 as measured at the X-point, a factor predicted by Malyshkin and Zweibel

[13] for the resistive (Sweet-Parker) regime. In this limit, the change mi → mi/χ leads to

a reduced Alvén velocity and Lundquist number. Carrying out the Sweet-Parker analysis
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FIG. 2. Transition between collisional and collisionless reconnection in Series A. Panels show a)

The scaled reconnection rate, b-c) the minimum current sheet width normalized to the local ion

inertial length di and the hybrid inertial length diχ
−1/2, and d) the electron temperature at the

X-point.

yields R ≈ S−1/2χ1/4. Early in time, all cases undergo collisional reconnection and this

scaling holds, as evidenced by Rχ−1/4 invariant across cases.

All except the χ0 = 0.05 case transition to fast reconnection later in time, although the

peak rate in the collisionless regime is χ dependent. To test the transition criteria, the local

current sheet thickness δ is measured and normalized to both di and diχ
−1/2, Figure 2(b-c).

In all cases, the current sheet thins below diχ
−1/2, however the transition in reconnection rate

is more closely correlated with the condition δ/di ≈ 1. Supporting this, the case χ0 = 0.05

does not transition despite satisfying diχ
−1/2 > δ & di.

The failure to transition can be understood by examining the electron temperature at
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FIG. 3. Evaluation of the terms in Ohm’s law along the inflow of the χ0 = 0.1 case from Series

B at tΩi0 = 175. The ion diffusion region is defined by J ×B < 0 corresponding to |x| < 6.5di0.

Equation (3) is tested by plotting the right-hand-side as the dashed line. To reduce noise, ∂2vny/∂x
2

is averaged over ±2.5di0.

the X-line, figure 2(d). On reconnection timescales, all species are well-coupled, but for

decreasing χ, the larger neutral fraction increases the total heat capacity, thereby reducing

the temperature rise at the X-line. As a result, in the χ0 = 0.05 case, Te and η remain

nearly constant over time. This reduced temperature rise prevents Ohmic heating from

thinning the current sheet below di as was seen in previous fully-ionized simulations[30].

This suggests that while transport physics are important in understanding the detailed

behavior of the collisional-collisionless transition at moderate to high ionization fractions,

for low χ, isothermal models[31, 32] are more appropriate.

To examine the dependence of the reconnection rate, simulations were performed with a

thinner initial current sheet width of 1di0 such that all cases transition to fast reconnection.

Here we distinguish between the global rate, as defined above, and the local reconnection

rate defined by uin/vA where uin is the peak inflow speed in the center of mass frame. These

measures are plotted at the time of peak global reconnection rate in figure 4.

For χ & 0.15 the global rate scales with the bulk Alfvén speed as R = 0.08χ1/2, equivalent

to a constant, fast rate of 0.08 if the definition of vA included neutrals. In this study, βi = 0.3

6



is held fixed, and the neutral beta is βn = βi/χ. For χ ≤ 0.15, βn ≥ 2 and the bulk Alfvén

speed falls below the neutral sound speed. In this regime, R becomes χ independent, and for

Lz = 100di0 follows the scaling R = 0.075vMS/vA where vMS is the coupled magnetosonic

phase speed vMS/vA = (χ + βi/2)1/2 [33]. In larger systems, the rate is reduced suggesting

that in very large systems the rate may continue to scale with the bulk Alfvén speed. The

detailed physics underlying the χ and system size dependence in this regime are not yet

fully understood and will be explored in a future manuscript.

The local rate does not depend on system size and scales as uin/vA ∼ χ1.2. This differs

from, but is related to, the global rate, and in a well-coupled, steady-state system they

should be equivalent. This is typically the case for fully ionized systems, however in partially

ionized systems decoupling of ion and neutral flows can break this relationship[9, 14]. Flow

decoupling, while present, is not sufficient to explain these results. Rather, at the time of

peak rate the maximum uin occurs at the edge of the ion diffusion region and there is a

transient, non-uniform E. As a result, the local E×B velocity differs from the global Ey/B

and thus uin/vA differs from R.

Locally, the electric field is supported at the X-line by the nongryotropic electron pressure

tensor [34], figure 3, ENG ≡ −(∇ · Pe)y/en. For ENG to be significant, δ must be on the

order of the electron gyro-radius, ρe, and in all cases δ/ρe ≈ 0.3-0.5, where ρe is evaluated at

1δ upstream of the X-line. Furthermore, as a consequence of momentum conservation and

the collisional couplings, neutral viscosity must also be included. The momentum equations

are

mene
dve

dt
= −ene

(
E +

ve ×B

c

)
−∇ ·Pe −Rie (1a)

mini
dvi

dt
= eni

(
E +

vi ×B

c

)
−∇ ·Pi + Rie + Rin (1b)

mnnn
dvn

dt
= −∇ ·Pn −Rin, (1c)

where Rab = −Rba is the frictional force on species a from species b. In steady-state and at

the X-line, B = 0 and vs = vs,yŷ due to symmetry. Using this and adding the y components,

the constraint

eneENG = (∇ · (Pi + Pn))y (2)

is obtained.
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FIG. 4. Ionization fraction and system size dependence of a) the global reconnection rate b) the

local inflow velocity and c) the ion diffusion region thickness for Series B-D. Labeled lines in a)

show the scalings R = 0.08χ1/2 (Alfvénic) and R = 0.075(χ+ βi/2)1/2 (Magnetosonic). In c), the

solid line is ∆/di = 4χ−1/2. In panel d), equation (6) is tested using ∆0 = 4di and θ = 1 with the

solid line showing equality.

When ions and neutrals are the same atomic species, the dominant collisional process

is symmetric charge-exchange, and collision integrals can be evaluated[35]. In the limit

νin & Ωi � |∇vi| and vth,i � |vi − vn|, the pressure tensors are efficiently coupled, and to

lowest order Pi ≈ niPn/nn.

In the weakly ionized limit and on length scales above the neutral mean-free-path, the

neutral pressure tensor can be closed using an incompressible hydrodynamic closure, Pn =

Pn −mnnnνs
(
∇vn + (∇vn)T

)
where νs is the kinematic shear viscosity and Pn the scalar

pressure. On shorter length scales, kinetic corrections are present[36, 37], but this closure

can still be used to roughly estimate the neutral pressure tensor near the X-line. Combining

these closures with equation (2) gives

ENG = −mn

e

νs
χ
∇2vn,y ≈ −

mn

e

νs
χ

∂2vn,y
∂x2

, (3)

which is tested in figure 3(a) and approximately holds.

A result of this out-of-plane flow is that the local inflow is limited by momentum balance
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within the ion-diffusion region. The total y− momentum deposition rate must be balanced

by inward and outward transport,

∆L

c
(J×B)y =m (ni + nn) (∆uz,outuy − Lux,inuy,in)

+ ∆Pyz,out − LPxy,in,

(4)

where ∆ and L are the half-width and half-length of the ion-diffusion region respectively, u

is the center-of-mass velocity, and Pab is the total pressure tensor. For simplicity, we will

neglect flow decoupling so u = vi = vn, approximate the ratio of momentum transport

by advection relative to internal stress by m(ni + nn)ux,inuy,in/Pxy,in ≈ ux,in∆/νs, and the

(J×B)y force by eniEy. Then, along with equation (3), equation (4) can be solved for ux,in,

ux,in =
νs
∆

uy,in
uy − uy,in

. (5)

At the edge of the ion diffusion region ux,in = cEy/Bz,in which, using equation (3), gives

uy = ux,in∆2χΩn/νs, where Ωn ≡ eBz,in/mnc. Inserting this into equation (5) allows the the

inflow velocity to be parameterized as a function of the inflow velocity angle θ ≡ uy,in/ux,in.

Empirically we find θ ≈ 1 ± 0.2 (tan−1 θ = 40-50◦), although we do not have a physical

explanation for this. Further simplification is achieved by noting that ∆ = ∆0χ
−1/2, as

shown in figure 4(c) and predicted by Malyshkin and Zweibel [13] by making the replacement

di → diχ
−1/2. Using this and assuming θ = 1 gives the prediction

ux,in
vA,in

=
χ1/2

∆0

di
Re2 − Re

, (6)

where Re ≡ ∆0vA,in/νs is the characteristic Reynolds number and vA,in is the Alfvén velocity

evaluated using Bz,in. This equation is tested in figure 4(d) using the value ∆0 = 4di. Good

agreement is obtained over all cases despite the simplicity of this model, and can be improved

further by using the measured θ (not shown).

Equation (6) determines the local reconnection rate based on the ionization fraction and

the magnetic field strength at the edge of the ion diffusion region. Although sufficient to

describe the present results, equation (6) predicts a vanishing local rate in the limit νs → 0.

In this limit resistive dissipation likely dominates and the assumption Ey = ENG no longer

holds.

This Letter presents the first fully kinetic simulations of partially ionized reconnection

and examines the scaling of the reconnection rate and the transition from collisional to
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collisionless reconnection. Fast reconnection in partially ionized systems is demonstrated

for the first time, the transition to which occurs when the current-sheet thins below di. The

global reconnection rate scales with the bulk Alfvén velocity when βn < 2, but for βn > 2

the rate is system size dependent and appears to scale with mangetosonic speed in small

domains. This effect is not yet understood and will be examined further in future work. In

the cases studied, the neutral viscosity balances the J × B force, which differs from both

ambipolar diffusion (where the inertial force balances J × B[38]) and from inviscid multi-

fluid models[13]. As a result, the inflow velocity is χ dependent due to viscous momentum

transport.

This work studies single X-lines in preexisting thin current sheets, but understanding how

and when such current sheets could form is an important question. Ambipolar diffusion[39],

turbulence[40], and plasmoid instability[30, 41–44] are known mechanisms for producing thin

current sheets, but in the absence of such mechanisms fast reconnection may be inhibited.

Although there is currently no comprehensive theory of partially ionized plasmoid instability,

previous fluid studies have routinely observed plasmoids[14, 16, 18], suggesting that it may

be a generic and important process in very weakly ionized systems such as the lower solar

chromosphere.
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