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We investigate cluster synchronization in experiments with a multilayer network of electronic10

Colpitts oscillators, specifically a network with two interaction layers. We observe and analytically11

characterize the appearance of several cluster states as we change coupling in the layers. In this12

study, we innovatively combine bifurcation analysis and the computation of transverse Lyapunov13

exponents. We observe four kinds of synchronized states, from fully synchronous to a clustered14

quasiperiodic state—the first experimental observation of the latter state. Our work is the first to15

study fundamentally dissimilar kinds of coupling within an experimental multilayer network.16

PACS numbers: May be entered using the \pacs{#1} command.17

Networks with multiple layers of interactions arise in18

models for epidemic propagation [1, 2], the social world19

of the Medicis [3], and the failure of interdependent net-20

works such as the power grid [4, 5], among others. These21

layers of interactions can operate in fundamentally dif-22

ferent ways. Neurons communicate by both chemical23

and electrical coupling; chemical synapses are probabilis-24

tic, delayed, and unidirectional while electrical synapses25

are deterministic and bidirectional [6]. The interplay be-26

tween both kinds of synapses is thought to be essential27

to normal functioning of the brain [6–8].28

Networks with a high number of symmetries arise in29

many systems [9]: in biology, the C. elegans metabolic30

network; in infrastructure the U.S. power grid and airport31

network; in social networks, the PhD network [10]. Sym-32

metric multilayer networks have been investigated using33

quotient networks for dimensionality reduction [11, 12]34

and using eigenspectral analysis [11]. Study of synchro-35

nization in multilayer networks was originally presented36

in [13, 14] and more recently in [15]. Recent experiments37

explored synchronization between identical [16] and non-38

identical [17] layers of a multilayer network. These papers39

studied complete synchronization (all systems synchro-40

nizing on the same time-evolution) with only diffusive41

coupling.42

Clustered patterns arise from network symmetries [18,43

19], but few experiments study this causality; most ex-44

perimental studies focus solely the appearance of inter-45

esting clusters and not on the role the network symme-46

tries play in their presence [20–22]. The studies that do47

directly connect network symmetry and clustering are48

digitally implemented [18, 23, 24]; they exclude some as-49

pects that arise in real systems. No experimental study50

of clustering in multilayer networks exists.51

In this letter, we are the first to study cluster synchro-52

nization in a fully analog symmetrical multilayer network53

with both diffusive and non-diffusive coupling. Despite54

of its simplicity, this analog electronic system not only55

represents the smallest multilayer network with multiple56

symmetries but also captures the uncertainties and fluc-57

tuations present in real and more complex physical sys-58

tems. We describe the possible cluster synchronizations59

of the system as we vary coupling parameters. We exper-60

imentally observe and theoretically characterize clusters61

of nodes that synchronize on different time evolutions.62

The system is fully analog, where other studies have used63

a computer interface to implement coupling [16, 17, 25].64
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FIG. 1. Left panel: Colpitts oscillator. The oscillator is cou-
pled to its two neighbors via resistor Rx and mutual magnetic
coupling between the tank inductors, controlled by the induc-
tor separation, x. Tunable parameters are in red; fixed com-
ponents of other oscillators are in gray. Right panel: Topology
of the coupled oscillator network. Mij = k

√
LiLj , where k is

roughly proportional to 1/x2.

Electronic circuits are ideal testbeds for the study of65

nonlinear behavior in networks [26]; we choose to use66

the Colpitts oscillator. As shown in the left panel of67

Fig. 1, the Colpitts oscillator is a simple electronic oscil-68

lator based on a bipolar junction transistor (BJT) that69

uses two center-tapped capacitors in series with a paral-70

lel inductor as its resonance tank circuit. Several studies71

have explored the periodic, quasi-periodic and chaotic72

behavior of individual Colpitts oscillators [27–30]. Oth-73

ers have discussed either magnetically coupled [31] or74

resistively coupled [30] Colpitts oscillators. Simplicity,75

low-cost, ease of fabrication, ability to work in different76
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regimes, availability of a large volume of previous studies,77

and the ability to introduce different kinds of connections78

make the Colpitts oscillator particularly suitable for mul-79

tilayer network studies. We create the first fully-analog80

multilayer network with four periodic Colpitts oscillators81

coupled through two different kinds of coupling mecha-82

nisms, resistive and magnetic.83

The right panel of Fig. 1 shows the topology of the cor-84

responding network; this is the simplest multilayer net-85

work that has multiple symmetries (for an easier network86

with only one symmetry, see SI Sec. 2). The four nodes,87

each a Colpitts oscillator, form a ring with coupling al-88

ternating between resistive and magnetic. We achieve89

resistive coupling by connecting the collectors of transis-90

tors in pairs of oscillators through a resistor, Rx; we tune91

the coupling by connecting resistors of the desired value.92

To achieve magnetic coupling, we bring the inductors of93

two nodes sufficiently near, such that the mutual induc-94

tance, Mij , becomes large enough; we tune the coupling95

by changing the inductor separation distance, x.96

The dynamics of the network shown in Fig. 1 is:

C1,iV̇ce,i = IL,i − Ic(Vbe,i)

+
1

Rx

N∑
j=1

Rij [(Vce,j − Vce,i)− (Vbe,j − Vbe,i)]

C2,iV̇be,i = −(Vee + Vbe,i)/Ree,i − Ib(Vbe,i)− IL,i (1)

− 1

Rx

N∑
j=1

Rij [(Vce,j − Vce,i)− (Vbe,j − Vbe,i)]

LiİL,i = Vcc − Vce,i + Vbe,i − IL,iRL,i −
N∑
j=1

MijMij İL,j ,

where i = 1, ..., 4 is the index of the oscillator, Li is the97

inductance and C1,i, C2,i are the capacitances of the cir-98

cuit components (see Fig. 1); Vce,i is the voltage drop99

between the collector and the emitter of the transistor;100

Vbe,i is the voltage drop between the base and the emit-101

ter. Vcc and Vee are applied voltages; Ib and Ic are the102

current of the base and the collector, respectively. These103

two currents are the nonlinear terms in the system; they104

are zero below a threshold voltage and increase linearly105

above this cutoff. In a BJT these currents are related106

through β = ∆Ic/∆Ib ≈ Ic/Ib where β is the BJT am-107

plification factor, see SI for more details about the ex-108

perimental arrangement.109

The magnitudes of the resistive and magnetic coupling110

coefficients are 1/Rx and Mij = k
√
LiLj , respectively. k111

characterizes the mutual inductance and is roughly pro-112

portional to 1/x2 (see SI for a specific relationship); k113

is positive if the currents induced by mutual and self-114

inductance are in-phase, and negative if they are an-115

tiphase. Note that the resistive and magnetic couplings116

are different in nature and therefore enter the dynamic117

equations in different forms (as evident in Eq. (1)). Re-118

sistive coupling is diffusive and affects the current. Mag-119

netic coupling is non-diffusive, differential [32], and af-120

fects the voltage. The adjacency matrices R and M de-121

scribe how the oscillators are connected to one another122

by resistive and magnetic coupling, respectively. In our123

four-member ring network, R and M are:124

R =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , M =

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 . (2)

By inspection of the four-node system (right panel of125

Fig. 1), we observe three symmetries present in the multi-126

layer network, i.e., three permutations of the nodes which127

leave the network unchanged: (1) vertical symmetry, per-128

muting 1 with 4 and 2 with 3, (2) 180◦ rotation, permut-129

ing 1 with 3 and 2 with 4, (3) horizontal symmetry, per-130

muting 1 with 2 and 3 with 4. These permutations, along131

with the identical permutation (that maps each node to132

itself), form a mathematical group G that we call sym-133

metry group of the multilayer network. Subgroups of G134

define possible cluster patterns [25].135

By assuming the Colpitts oscillators have identical136

components (C1,i = C2,i = C, Li = L, Mij = Mji =137

M = kL), we can rewrite Eq. (1) as a generic multidimen-138

sional network with N = 4 oscillators coupled through139

Λ = 2 layers [13–15, 33, 34] (see SI for derivation):140

ẋxxi = F (xxxi) +

Λ∑
λ=1

σ(λ)
N∑
j=1

A
(λ)
ij H

(λ)(xxxj), (3)

where141

xxxi =

Vce,iVbe,i
IL,i

, F =


−Ic(Vbe,i)+IL,i

C
−(Vee+Vbe,i)/Ree−Ib(Vbe,i)−IL,i

C
Vcc−Vce,i+Vbe,i−IL,iRL

L(1−k2)

 ,
142

H(1) =

Vce − VbeVbe − Vce
0

, H(2) =

 0
0

Vcc − Vce + Vbe − ILRL

 ,
σ(1) = 1

CRx
, σ(2) = − k

L(1−k2) , A(1) = R− I4 and A(2) =143

M, where I4 is the 4 dimensional identity matrix.144

Let the clustered motion have C clusters, C1, . . . , CC ,
and let sss(t) = s1(t), s2(t), . . . , sC(t) be a possible clus-
tered solution. We can linearize Eq. (3) around that so-
lution obtaining

δẋxx =

[
C∑
n=1

En ⊗DF (sn)+

Λ∑
λ=1

σ(λ)
(
A(λ) ⊗ I3

) C∑
n=1

(
En ⊗DH(λ)(sn)

)]
δxxx, (4)

where En is a four by four matrix which identifies if node i145

belongs to cluster Cn (En(i, i) = 1 if i ∈ Cn, 0 otherwise).146

D represents the Jacobian operator.147
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Using the coordinate change δηηη = (T ⊗ I3)δxxx, we con-148

vert Eq. (4) from the node coordinate system to the ir-149

reducible representation (IRR) coordinate system. The150

IRR simultaneously block-diagonalizes the permutation151

matrices in the symmetry group of the multilayer net-152

work G; each block is an irreducible representation of the153

group [35]. Eq. (4) becomes154

δη̇ηη =

[
C∑
n=1

Jn ⊗DF (sn) +

Λ∑
λ=1

σ(λ)
(
B(λ) ⊗ I3

) C∑
n=1

(
Jn ⊗DH(λ)(sn)

)]
δηηη,

(5)

where Jn = TEnT
−1 and B(λ) = TA(λ)T−1. This155

change of coordinates decouples the dynamics of per-156

turbations along the synchronous manifold from those157

transverse to it, allowing us to separately analyze each158

direction [25].159

We perform the cluster synchronization analysis in two160

steps. First, we characterize global behavior along the161

synchronous manifold by studying the bifurcations of the162

nonlinear equations for each quotient network [36]. In the163

quotient network, all the nodes belonging to the same164

cluster (i.e., synchronized) are represented by one node,165

since their dynamics and their coupling with other clus-166

ters of the network is identical. We compute all the167

possible solutions by starting simulations from many ini-168

tial conditions, and we characterize the stability of each169

solution with a complete bifurcation analysis. We use170

AUTO07P[37, 38] to locate bifurcations and then MAT-171

CONT to compute their normal form coefficients [39–41].172

Second, we analyze the transverse block of Eq. (5); we173

compute the Maximum Lyapunov Exponent [42] of the174

subsystem, evaluating Eq. (5) at each synchronous stable175

solution sssn for all the possible parameter pairs. We need176

the global analysis to characterize all the possible solu-177

tions along which we compute the variational equation178

(see SI for a detailed description of the analysis).179

Figure 2 shows the four possible cluster patterns. For180

each pattern, the quotient network dynamics is described181

by Eq. (3) with a suitable choice of the coupling matrices182

A(1) and A(2). We also report the matrices, T , needed for183

the study of the stability transverse to each synchronous184

solution. To assess the stability of the clustered solutions,185

we analyze only the three possible two-cluster quotient186

networks. The fully synchronized pattern is a special187

solution of all three two-cluster quotient networks, and188

we can thus obtain its stability by looking at the stability189

of each of the other patterns.190

In Figure 3, we show the combined analysis of the three191

clustered solutions, grouped into in-phase (left) and anti-192

phase (right) solutions (see the SI for a detailed analysis193

of the three clustered solutions, where we present and194

explain each bifurcation diagram and transverse stability195

diagram). We identify nine regions with qualitatively dif-196

ferent clustered patterns (reported in the bottom boxes197

of Fig. 3). We group the cluster patterns to relate them198

1 2

4 3
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1 2

4 3

Diagonal

1 2

4 3

One-cluster

1 2

4 3

Horizontal

FIG. 2. Possible cluster synchronization patterns. The left
schematic represents the full network; nodes belonging to the
same cluster synchronization pattern are colored the same.
We indicate symmetry with the red dashed line. The one- or
two-node labeled schematic represents the quotient network.
On the right, we show the A(λ) and T for each pattern. A(λ)

is the adjacency matrix for layer λ, with λ = 1 representing
the resistive layer and λ = 2 representing the magnetic layer.

to experimentally observable behavior; this is because199

some of the cluster states become indistinguishable in the200

presence of experimental noise and heterogeneity. For ex-201

ample, cluster patterns a1 and a2 differ by a small phase202

offset that cannot be measured due to experimental noise.203

Cluster patterns a1 and a3 differ mostly in amplitude, but204

the experimental amplitude is sensitive to many details205

beyond the scope of the model, such as the resistances of206

the capacitors, inductors, and component junctions, and207

nonlinearity of the transistor gain. We thus create four208

groups from the nine theoretical clustered patterns— (a,209

gray) fully in-phase, tolerating small mismatches in am-210

plitude and phase; (b, turquoise) the vertical two-cluster211

with a phase offset up to π/2 rad; (c, pink) the verti-212

cal two-cluster, tolerating small mismatches in amplitude213

and phase; and (d, magenta) the quasiperiodic vertical214

two-cluster, tolerating small mismatches in amplitude.215

We performed experiments at 5 values of Rx (27Ω,216

300Ω, 510Ω, 750Ω, and 1000Ω) and varied k from -0.03 to217

-0.4 for the parallel inductor configuration and from 0.03218

to 0.4 for the anti-parallel inductor configuration. To de-219

tect the presence of multiple attractors we first increase220

then decrease k, guided by the theoretically predicted221

hysteresis between the periodic in-phase and the peri-222

odic anti-phase solutions (in the left panel of Fig. 3 no223

in-phase solution is present for large negative k, while in224

the right panel no anti-phase solution is present for large225

positive k). The top left panel of Fig. 4 shows the cluster226

state observed at each experimental measurement.227

Figure 4 shows broad agreement between our experi-228
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FIG. 3. Possible patterns of Eq. (3). Region coloring indicates
experimentally distinguishable patterns: (Top left) in-phase
and (Top right) antiphase. Boxes below show representative
time series from simulations grouped by observability. When
clustered solutions are present, we indicate them with V, H,
or D in the upper lefthand corner for vertically-, horizontally-,
and diagonally- synchronized, respectively. (a panels) gray:
in-phase, tolerating small mismatches in amplitude and phase;
(b panel) turquoise: vertical two-cluster with a phase offset
up to π/2 rad; (c panels) pink: vertical two-cluster, toler-
ating small mismatches in amplitude and phase; (d panels)
magenta: quasiperiodic vertical two-cluster, tolerating small
mismatches in amplitude.

mental and theoretical results (for discussion of the dis-229

crepancies, see the SI). Each of the four cluster types230

(reported in the bottom boxes of Fig. 4) observed exper-231

imentally is predicted by the theoretical analysis. The232

system exhibits bistability between the fully synchro-233

nized state (A, gray) and the vertical two-cluster state234

(C, pink) for large ranges of k and Rx. We observe the235

fully synchronized solution for large positive magnetic236

coupling and small negative coupling; we observe the ver-237

tical two-cluster solution for small positive and large neg-238

ative coupling. Near k = 0.12, we see the quasiperiodic239

vertical two-cluster state (D, magenta). At k = 0.05 and240

Rx = 27Ω, we observe the vertical two-cluster with a241

phase separation near π/2 rad, (B, turquoise).242

This work is the first study on cluster synchroniza-243

tion in multilayer networks with symmetries. We show244

that a small network with well-understood periodic Col-245

pitts oscillators exhibits rich dynamical behavior such as246

bistability, hysteresis, and quasiperiodicity. This is the247

first experimental observation of a clustered quasiperi-248

odic state. The analysis innovatively combines bifur-249

cation analysis and the computation of transverse Lya-250

punov exponents, allowing us to overcome limitations of251

each individual approach. First, unlike the bifurcation252

analysis of the full system, our approach can handle mul-253
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FIG. 4. Gray represents the one-cluster state; pink represents
the vertical two-cluster state; turquoise represents a solution
of the vertical two-cluster state two-cluster with a phase off-
set up to π/2; magenta represents a quasi-periodic solution of
the vertical two-cluster state; and white represents no stable
frequency locking. Stripes of two colors represent bistability
between the two states represented by each color. (Top left)
Experimentally observed cluster states. Black dots represent
individual experimental measurements; we infer a color mesh
from these results. (Top right) Theoretical prediction of clus-
ter states from Fig. 3. (Bottom) Experimental time series of
Vbe(t) demonstrating clusters corresponding to the theoreti-
cal predictions. From left to right, we observe (A) the fully
synchronized state, (B) the vertical two-cluster with a phase
offset up to π/2 rad, (C) the two-cluster, and the (D) quasi-
periodic two-cluster.

tiple symmetries using standard software [37, 39]. Sec-254

ond, compared to the computation of transverse Lya-255

punov exponents alone, it can find any possible cluster256

pattern even in the presence of multiple attractors of the257

quotient networks. The interplay of theory and experi-258

ments was essential for an in-depth phenomenological un-259

derstanding of the system behavior; experiments allowed260

us to understand which theoretically predicted cluster261

states were observable, while theory helped us identify262

hard to find cluster states. Note that even though we263

have applied our analysis to a very simple multilayer net-264

work, it is possible to scale the described approach to265

networks with any numbers of nodes or layers. This scal-266

ing is nontrivial and requires the definition of the group267

of symmetries of a multilayer network; this is the subject268

of ongoing research and is briefly introduced in the SI,269

sect 5 [43].270

Our work shows how different interactions layers in-271

fluence the overall state of the system; applications of272

the described theory can be found in a variety of fields273

where patterned behavior and multilayer systems arise.274

The method requires three ingredients: (1) a dynami-275

cal system describing the network, (2) multiple kinds of276

interactions, and (3) patterned behavior. Many papers277

propose dynamical equations for both neurons [44–46]278
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and their network of interactions [47–50]; neurons are279

connected through electrical and chemical synapses [6].280

A vast literature explores the likely relationship between281

epilepsy and synchronization [51] and models of cou-282

pled neurons exhibit clustered behavior [52]. Several283

models exist to describe the dynamics of opinion forma-284

tion [53, 54], which is mediated by different layers of inter-285

action through social media, advertising, friend networks,286

etc., producing clusters of belief [55]. Bark beetles infest287

forests in patterns [56]; different tree species and various288

beetle transportation methods (self, carried by animals or289

wind, etc.) form the multilayer network representation of290

the forest-insect model [57]. Proposed circuit designs use291

quantum cellular automata (QCA) with cluster-like clock292

zones to perform calculations; two kinds of QCA cells293

(regular and rotated) are connected with either coplanar294

or multilayer connections [58]. Understanding the dy-295

namical behavior of symmetric multilayer networks may296

play an important role in the design and development of297

neuromorphic computational systems [59]. To our knowl-298

edge, none of the studies on neuromorphic systems has299

considered dissimilar interactions between nodes, which300

seems to be an essential feature of most biological net-301

works such as the brain [6] as well as a contributor to the302

overall robustness of a system [60, 61].303
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