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Precision measurements of the inverse-square law via experiments on short-range gravity provide
sensitive tests of Lorentz symmetry. A combined analysis of data from experiments at the Huazhong
University of Science and Technology and Indiana University sets simultaneous limits on all 22
coefficients for Lorentz violation correcting the Newton force law as the inverse sixth power of
distance. Results are consistent with no effect at the level of 10−12 m4.

Lorentz symmetry, the idea that physical laws are un-
changed under rotations and boosts, is built into both
General Relativity (GR) and the Standard Model. Al-
though GR provides an impressive description of a wide
variety of gravitational phenomena, the successful merger
of gravitation and quantum physics may involve a modifi-
cation of its foundational principles. This could produce
observable deviations from Lorentz symmetry, emerging
from a unified theory such as strings [1].

Since no compelling evidence for Lorentz violation
(LV) currently exists, model-independent searches for LV
in gravity play an essential role in testing the founda-
tions of GR. A powerful model-independent approach to
describing possible low-energy signals of LV is effective
field theory [2], which is widely adopted for experimen-
tal analyses studying Lorentz symmetry [3, 4]. In the
pure-gravity limit, this approach uses a Lagrange density
containing the usual Einstein-Hilbert term and a series of
all observer-scalar terms involving coefficients contracted
with gravitational-field LV operators of increasing mass
dimension d.

Precision experiments testing the inverse-square law at
short range provide crucial and specific probes of grav-
itational properties [5], including tests of Lorentz sym-
metry in gravity at submillimeter distances [6–8]. Ap-
plying the techniques of effective field theory in this
context shows that LV operators can lead to direction-
dependent corrections to the Newton force that fall as
inverse-square, inverse-fourth, inverse-sixth, and higher
powers of distance [9–11]. A complete classification of
possible effects is known [12], but no specific predictions
exist for their sizes. Moreover, many of these corrections
are experimentally unexplored, with even comparatively
strong “countershaded” LV couplings remaining untested
to date [13]. Model-independent experimental analyses
without preconceived sensitivity expectations are thus vi-

tal in investigating this foundational property of GR.

In the present work, we perform a combined analysis
of data from short-range experiments at the Huazhong
University of Science and Technology (HUST) and In-
diana University (IU) to complete a model-independent
search for LV effects involving operators of mass dimen-
sion d = 8, which produce a direction-dependent force
inversely proportional to the sixth power of distance.
Our results are consistent with no effects at the level
of 10−12 m4 for all 22 independent coefficients for LV ap-
pearing in the Newton limit, thereby excluding a short-
range LV gravitational force down to a distance scale of
less than a millimeter.

For d = 8, the LV modification to the Newton potential
between two test masses m1 and m2 is given in spherical
polar coordinates by [11]

VLV (~r) = −G
∑

jm

m1m2

r5
Yjm(θ, φ)k

N(8)lab
jm (1)

in the laboratory frame. Here, the vector ~r = ~r1 − ~r2 ≡
(r cosφ sin θ, r sinφ sin θ, r cos θ) separates m1 and m2,
j = 4 or 6, and m is an integer in the range −j ≤ m ≤ j.

The LV effects are controlled by the coefficients k
N(8)lab
jm ,

which are complex numbers with dimensions of length to
the fourth power.

The explicit form of the coefficients k
N(8)lab
jm is frame

dependent, so experimental results must be reported in
a specified frame. In cartesian inertial frames in the
vicinity of the Earth, the coefficients can be taken as
constant [14]. The canonical frame used in the litera-
ture to present results is the Sun-centered frame with
right-handed cartesian coordinates (T,X, Y, Z) chosen
such that T is zero at the 2000 vernal equinox, the X
axis points from the Earth’s position at T = 0 to the
Sun, and the Z axis is parallel to the Earth’s rotation
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axis [15]. Earth-based laboratories are noninertial due to
the Earth’s rotation, so the laboratory-frame coefficients

k
N(8)lab
jm acquire dependence on sidereal time [16]. In

standard laboratory cartesian coordinates with the x axis
pointing to the south, the y axis to the east, and the z
axis to the local zenith, the laboratory-frame coefficients

k
N(8)lab
jm can be expressed in terms of time-independent

coefficients k
N(8)
jm in the Sun-centered frame by the rela-

tion [11]

k
N(8)lab
jm =

∑

m′

eim
′ω⊕T⊕d

(j)
mm′(−χ)k

N(8)
jm′ , (2)

where the Earth’s boost is treated as negligible. In this
expression, ω⊕ ≃ 2π/(23 h 56 min) is the Earth’s sidereal
frequency and T⊕ ≡ T − T0 is the local laboratory side-
real time, which differs from T by a longitude-dependent
offset [17]: T0 ≃ −3.2 h for HUST, and T0 ≃ 10.2 h for

IU. Also, χ is the laboratory colatitude, and d
(j)
mm′ are

the little Wigner matrices [18]. The primary goal of the

experimental analysis is to measure the coefficients k
N(8)
jm

in the Sun-centered frame.
The inverse-fifth corrections to the Newton potential

imply that experiments testing gravity at short range
have excellent sensitivity to LV effects. For d = 8, the
index m′ in Eq. (2) takes integer values in the range
−6 ≤ m′ ≤ 6, so the potential includes components up
to the sixth harmonic of ω⊕ and can be expressed as a
Fourier series in T ,

VLV(~r) = −
Gm1m2

r5

(

c0 +

6
∑

m=1

cm cos(mω⊕T⊕)

+sm sin(mω⊕T⊕)
)

. (3)

The 13 Fourier amplitudes in this expression are func-

tions of the 22 independent coefficients k
N(8)
jm in the Sun-

centered frame.
Numerical methods can be used to calculate the gravi-

tational LV interaction between finite test masses. Most
inverse-square law tests use masses with planar geom-
etry [19, 20]. In addition to suppressing the Newton
background, a planar geometry tends to average and sup-
press the angular oscillations of the LV signal [7, 21, 22],
thereby necessitating careful integration of the forces as-
sociated with Eq. (1). For practical applications, it can
thus be convenient to calculate using a local cartesian
coordinate system. The spherical harmonics in Eq. (1)
can be expanded in symmetric trace-free tensors c<J>

jm

according to [23]

Yjm(θ, φ) = c∗<J>
jm n<J>(x, y, z), (4)

where

n<J>(x, y, z) =
rj+1

(−1)j(2j − 1)!!
∂J

1

r
. (5)

TABLE I. Expressions for the Fourier amplitudes in Eq. (3).

Quantity Expression

c0 α1k
N(8)
40 + α2k

N(8)
60

c2 α3Rek
N(8)
42 + α4Im k

N(8)
42

+α5Rek
N(8)
62 + α6Im k

N(8)
62

s2 α4Rek
N(8)
42 − α3Im k

N(8)
42

+α6Rek
N(8)
62 − α5Im k

N(8)
62

c4 α7Rek
N(8)
44 + α8Im k

N(8)
44

+α9Rek
N(8)
64 + α10Im k

N(8)
64

s4 α8Rek
N(8)
44 − α7Im k

N(8)
44

+α10Re k
N(8)
64 − α9Im k

N(8)
64

c6 α11Re k
N(8)
66 + α12Im k

N(8)
66

s6 α12Re k
N(8)
66 − α11Im k

N(8)
66

c1 α13Re k
N(8)
41 + α14Im k

N(8)
41

+α15Re k
N(8)
61 + α16Im k

N(8)
61

s1 α14Re k
N(8)
41 − α13Im k

N(8)
41

+α16Re k
N(8)
61 − α15Im k

N(8)
61

c3 α17Re k
N(8)
43 + α18Im k

N(8)
43

+α19Re k
N(8)
63 + α20Im k

N(8)
63

s3 α18Re k
N(8)
43 − α17Im k

N(8)
43

+α20Re k
N(8)
63 − α19Im k

N(8)
63

c5 α21Re k
N(8)
65 + α22Im k

N(8)
65

s5 α22Re k
N(8)
65 − α21Im k

N(8)
65

α1
3

16
√

π
(3− 30 z2 + 35 z4)

α2 −
1
32

√

13
π
(5− 105 z2 + 315 z4 − 231 z6)

α3 + iα4 −
3
4

√

5
2π

(x+ i y)2(1− 7 z2)

α5 + iα6
1
32

√

1365
π

(x+ i y)2(1− 18 z2 + 33 z4))

α7 + iα8
3
8

√

35
2π

(x+ i y)4

α9 + iα10 −
3
16

√

91
2π

(x+ i y)4(1− 11 z2)

α11 + iα12
1
32

√

3003
π

(x+ i y)6

α13 + iα14 −
3
4

√

5
π
(x− i y) z(3− 7 z2)

α15 + iα16
1
8

√

273
2π

(x− i y) z(5− 30 z2 + 33 z4)

α17 + iα18
3
4

√

35
π
(x− i y)3 z

α19 + iα20 −
1
16

√

1365
π

(x− i y)3 z(3− 11 z2)

α21 + iα22
3
16

√

1001
π

(x− i y)5 z

In this expression, ∂J represents ∂k1
. . . ∂kj

, and
c<J>n<J> involves a summation over all j pairs of re-
peated indices. The tensor c<J>

jm is given by

c<J>
jm =

(2j + 1)!!

4πj!

∫

n<J>Y ∗
jm(θ, ϕ)dΩ. (6)

Applying these results, the 13 amplitudes in the Fourier
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series (3) can be expressed in terms of cartesian coor-

dinates and the coefficients k
N(8)
jm in the Sun-centered

frame. These expressions are given in Table I. The
first part of this table displays the 13 amplitudes in

terms of the coefficients k
N(8)
jm and 22 independent func-

tions αj(r̂, χ), j = 1, · · · 22, of the test mass geometry
and the colatitude χ. The complex-conjugation relation

k
N(8)
jm

∗ = (−1)mk
N(8)
j(−m) [24] is used to express the k

N(8)
jm

in terms of their real and imaginary parts. The functions
αj(r̂, χ) are specified in the second part of the table, us-
ing the notation

x̃ =
x

r
cosχ+

z

r
sinχ, ỹ =

y

r
, z̃ = −

x

r
sinχ+

z

r
cosχ.

(7)
With these results, it is straightforward to obtain an an-
alytical expression for the LV force between a point and
finite rectangular plate. We note that the LV force be-
tween a point and an infinite plate vanishes, as in the
d = 6 case [7, 22]. For two finite rectangular plates, we
need merely perform a triple integral to obtain the LV
force or torque.

In general, measurements of the 13 Fourier ampli-
tudes in a single experiment constitute independent sig-
nals but are insufficient to constrain simultaneously the

22 independent coefficients k
N(8)
jm . However, two distinct

datasets can achieve complete coverage. Indeed, this is
true for LV force corrections proportional to r2−d, for
which the number of coefficients is 4d−10 and the maxi-
mum number of signals from any one experiment is 2d−3.
In the present case with d = 8, all 22 coefficients could in
principle be measured independently using two datasets
with distinct harmonics from the HUST-2015 experiment
or using two datasets from the IU-2002 and IU-2012 ex-
periments. Here, to maximize the sensitivity to the co-

efficients k
N(8)
jm , we perform a combined analysis of these

four datatsets.

Details of the HUST-2015 experiment are provided in
Ref. [19]. A brief summary is provided here. A bilat-
erally symmetric I-shaped pendulum is suspended near
an attractor disk with eightfold symmetry. Two pla-
nar tungsten test masses of thickness ∼200 µm, together
with two additional tungsten plates slightly offset to com-
pensate the Newton torque from r−2 interactions, are
mounted on either end of the pendulum facing the at-
tractor. The attractor consists of eight similar tungsten
source plates alternating with eight compensation plates.
The centers of the attractor and pendulum are aligned
and the gap between the test and source plates is main-
tained at 295 µm. The pendulum twist is controlled by
a feedback system, with differential voltages applied to
two capacitive actuators on the pendulum. In the pres-
ence of a non-Newton interaction, rotating the attractor
produces a torque. The attractor rotates at frequency
f0 = 2π/(3846.12s), so the nominal signal torque os-
cillates at 8f0 and is well separated from the drive fre-

quency, effectively suppressing vibrational backgrounds.
The experiment is designed to produce approximate null
measurements by double compensating for both the test
and source masses.
For a Yukawa-type interaction, the torque is maximal

when the source and test masses are face to face and
is minimal when they are offset. However, the LV in-
teraction averages to zero for symmetric configurations
[7, 22], so significant contributions appear at the higher
harmonics 16f0, 24f0, . . .. For the d = 6 case studied
earlier [8], in which the LV signal varies as r−4 and is
well nulled by the compensation scheme, the 16f0 signal
exceeds the 8f0 one by an order of magnitude and only
the 16f0 data were used for the analysis. In contrast, the
d = 8 interaction of interest here varies as r−6 and is less
well nulled, so the 8f0 and 16f0 contribute about equally.
The d = 8 signals at higher harmonics are comparable,
but they are swamped by higher-level noise in the data
[19], so we use only the 8f0 and 16f0 components in the
present analysis.
The LV signal torque in the HUST-2015 experiment

can be expressed as

τLV = C0+
6

∑

m=1

Cm cos(mω⊕T⊕)+Sm sin(mω⊕T⊕), (8)

where the Fourier amplitudes Cm, Sm can be obtained
by integration of the amplitudes cm, sm appearing in
Eq. (3) and Table I. This effectively replaces the func-
tions αj(r̂, χ) with transfer coefficients Λj , defined as

Λj = Gρ1ρ2

∫∫

∂

∂θ

αj(r̂, χ)

r5
dV1dV2, (9)

in analogy with Eq. (25) of Ref. [21] for the d = 6 case.
For example, integrating the first row of Table I via this

procedure yields C0 = Λ1k
N(8)
40 + Λ2k

N(8)
60 . The integra-

tion (9) computes the change in torque on the pendulum
as the source and compensation plates on the attractor
are swept across the faces of the test and compensation
plates on the pendulum, obtaining the LV torques τLV,8

and τLV,16 at the 8f0 and 16f0 response frequencies of
the pendulum. The numerical results for the transfer co-
efficients Λj for both frequencies are listed in the second
and third columns of Table II. The uncertainty on all Λj

is 10−6 Nm/m4.
In the IU-2002 and IU-2012 experiments, the test

masses consist of two planar tungsten oscillators of ap-
proximate thickness 250 µm, separated by a gap of about
80 µm and with a stiff conducting shield between them to
suppress backgrounds. A schematic is given in Fig. 1 of
Ref. [6], while details of the IU-2002 geometry are given in
Refs. [25, 26] and of the IU-2012 geometry in Ref. [6]. The
active “source” mass drives the force-sensitive “detector”
mass at a resonance near 1 kHz. At this frequency, a sim-
ple passive isolation system with high bending stiffness
can be used for vibration isolation. The oscillations of
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TABLE II. Transfer coefficients Λj for HUST-2015, IU-2002,
and IU-2012 experiments. Errors are 1σ.

Coef- HUST 8f0 HUST 16f0 IU-2012 IU-2002

ficient (±0.01, 10−4 Nm/m4) (10−4 N/m4)

Λ1 −0.08 −0.11 92± 269 8± 15

Λ2 0.03 0.14 75± 160 41± 10

Λ3 −0.22 0.35 −92± 289 −5± 19

Λ4 0.00 0.00 26± 264 21± 24

Λ5 0.22 0.13 −75± 180 16± 24

Λ6 0.00 0.00 −191± 239 −7± 13

Λ7 −0.11 −0.10 −290± 275 4± 25

Λ8 0.00 0.00 13± 168 2± 19

Λ9 0.31 0.10 642± 512 −48± 28

Λ10 0.00 0.00 −92± 139 −36± 14

Λ11 0.09 −0.02 57± 255 11± 23

Λ12 0.00 0.00 −70± 256 6± 13

Λ13 −0.12 0.38 −35± 301 24± 21

Λ14 0.00 0.00 132± 203 15± 12

Λ15 0.10 0.30 178± 319 14± 21

Λ16 0.00 0.00 70± 149 27± 20

Λ17 −0.20 0.30 237± 352 6± 14

Λ18 0.00 0.00 −145± 269 3± 22

Λ19 0.31 −0.13 −496± 332 −12± 15

Λ20 0.00 0.00 52± 302 −18± 38

Λ21 0.21 −0.02 −127± 140 −5± 17

Λ22 0.00 0.00 307± 451 52± 11

the detector mass are detected using capacitive trans-
ducers coupled to a differential amplifier [27]. The signal
is passed to a lock-in amplifier referenced by the wave-
form driving the source mass, and the output is taken as
the raw experimental data [6]. Comparison with the de-
tector thermal noise permits these data to be converted
to force readings. Details of the IU-2002 calibration are
given in Refs. [25, 26] and of the IU-2012 calibration in
Refs. [6, 27].

Following Ref. [6], the theoretical LV force for the IU
experiments is evaluated by Monte Carlo integration of
the z component of the force from the potential (1), in-
corporating the test-mass curvatures and mode shapes.
The results can be expressed as a Fourier series in the
local sidereal time T⊕ analogous to Eq. (8). The Fourier

force amplitudes are linear combinations of the k
N(8)
jm ,

weighted by a corresponding transfer coefficient Λj as
in Eq. (9). The numerical values of the Λj for the IU-
2002 and IU-2012 experiments are shown in the fourth
and fifth columns of Table II. Systematic errors associ-
ated with the positions and dimensions of the test masses
are established by calculating the mean and standard de-
viation of a population of Fourier amplitudes generated
with a spread of geometries based on the metrology er-
rors [6, 25]. Many Λj values in all columns of Table II

FIG. 1. HUST-2015 data at 8f0 and Fourier transform.

are dominated by the error. For the IU experiments, the
error is particularly sensitive to the longitudinal position
of the detector mass relative to the source mass.
For the HUST-2015 experiment, extraction of the LV

signal from the data proceeds as described in Ref. [8].
The data rate is much faster than the attractor modu-
lation frequency, so data are partitioned into bins cor-
responding to the modulation period ∆T = 3846.12 s.
The LV torque signals τLV,n(T⊕) with n = 8 and 16 are
extracted by fitting the measured torque τz(T⊕) in each
bin to

τz(T⊕) =
∑

n=8,16

τLV,n(T⊕) cos(2πnf0T⊕ + ϕn), (10)

where ϕn is set by operation of the experiment. The val-
ues of τLV,n(T⊕) are taken to be approximately constant
in each bin, since ω⊕∆T ≪ 1 and any sidereal varia-
tion within each bin is negligible. Data for the torque
τLV,8 are plotted in the upper panel of Fig. 1 as a func-
tion of time. Each point shows the mean measurement
in the modulation period without errors, which are dom-
inated by statistical fluctuations. The Fourier spectrum
for these data is displayed in the lower panel of Fig. 1.
The corresponding plots for the torque τLV,16 appear in
Fig. 1 of Ref. [8].
The Fourier amplitudes Cm, Sm are obtained by a sub-

sequent fit of the τLV,n(T ) data to Eq. (8), including
a small correction for averaging over ∆T [8]. The re-
sults are shown in the second and third columns of Ta-
ble III. A residual Newton torque is subtracted from
the time-independent amplitude C0. The error on this
amplitude is dominated by the uncertainties on the cal-
culated Newton torque [19], which in turn arise primarily
from uncertainties in the dimensions and positions of the
test masses. The Newton torque and its error are con-
siderably larger for the 16f0 component, which is less
well nulled by the compensation scheme. The sidereal-
harmonic amplitudes in Table III are dominated by the
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TABLE III. Fourier amplitudes (2σ, units 10−16 Nm for
HUST and 10−16 N for IU).

Mode HUST-8f0 HUST-16f0 IU-2012 IU-2002

C0 0.08 ± 0.10 −0.20± 2.40 0± 136 2± 411

C2 0.00 ± 0.08 −0.01± 0.08 47± 166 −53± 556

S2 −0.06 ± 0.08 −0.08± 0.08 −192± 187 −51± 176

C4 0.00 ± 0.08 0.04± 0.08 −42± 156 25± 448

S4 0.01 ± 0.08 −0.03± 0.08 −58± 192 83± 237

C6 0.04 ± 0.08 −0.04± 0.08 −41± 179 61± 306

S6 0.00 ± 0.08 0.02± 0.08 91± 146 52± 241

C1 −0.03 ± 0.08 0.00± 0.08 −108± 193 30± 130

S1 0.03 ± 0.08 0.00± 0.08 3± 161 −192± 449

C3 0.00 ± 0.08 0.01± 0.08 −173± 145 215 ± 180

S3 0.03 ± 0.08 −0.06± 0.08 223 ± 207 −56± 390

C5 0.02 ± 0.08 −0.03± 0.08 142 ± 181 −98± 201

S5 −0.08 ± 0.08 0.05± 0.08 132 ± 165 −190± 290

TABLE IV. Independent coefficient values (2σ, units
10−13 m4) obtained by combining HUST and IU data.

Coefficient Measurement

k
N(8)
40 −6.4± 50.9

Re k
N(8)
41 1.7± 5.5

Im k
N(8)
41 0.9± 5.8

Re k
N(8)
42 0.0± 3.9

Im k
N(8)
42 0.9± 4.0

Re k
N(8)
43 4.3± 7.3

Im k
N(8)
43 2.4± 7.3

Re k
N(8)
44 −2.8± 14.5

Im k
N(8)
44 −2.9± 14.4

k
N(8)
60 5.1± 100.9

Re k
N(8)
61 −2.4± 5.9

Im k
N(8)
61 −1.2± 6.4

Re k
N(8)
62 1.9± 5.5

Im k
N(8)
62 1.7± 6.2

Re k
N(8)
63 4.7± 6.8

Im k
N(8)
63 0.6± 7.9

Re k
N(8)
64 −0.9± 6.8

Im k
N(8)
64 −0.9± 6.7

Re k
N(8)
65 1.2± 7.8

Im k
N(8)
65 3.7± 7.1

Re k
N(8)
66 5.7± 14.4

Im k
N(8)
66 0.9± 14.2

statistical uncertainty, which is at the same level for each
harmonic.

For the the IU-2002 and IU-2012 experiments, the ac-
quired force data are described in detail in Ref. [6]. The
corresponding Fourier amplitudes up to the sixth har-
monic of the sidereal frequency ω⊕ are listed in Table III.

Uncertainties are dominated by the statistical errors in
the data. Errors also include contributions from the cali-
bration [6, 25] and from corrections due to discontinuities
in the time-series data [6], the latter of which include here
contributions from the 5ω⊕ and 6ω⊕ terms and hence dis-
play slight difference relative to the amplitudes reported
in Ref. [8]. Note that a few modes at 2ω⊕ and 3ω⊕

seem to reveal potential resolved signals, but these sub-
sequently become swamped by geometrical uncertainties
of the transfer coefficients during the analysis and hence

yield final measurements of k
N(8)
jm consistent with zero.

With the results in Table III in hand, the joint anal-
ysis proceeds as described in Refs. [6] and [8]. A global
probability distribution P (f̃ |k) is formed using the 52
Fourier amplitudes f̃i in Table III and their errors. Each
measured amplitude is assigned a gaussian distribution

pi that is a function of the 22 independent k
N(8)
jm and has

mean µi and standard deviation σi. The product of the
individual pi defines the global distribution,

P (f̃ |k) = P0 exp

[

−

52
∑

i=1

(f̃i − µi)
2

2σ2
i

]

, (11)

where P0 is an arbitrary normalization. The predicted
signal µi for the ith amplitude is given by the appro-
priate Fourier component for the HUST or IU experi-
ments, with the function αj replaced by the associated
integrated transfer coefficient Λj in Table II. The vari-
ance σ2

i incorporates all statistical and calibration er-
rors. Following standard procedure [28] to account for
the metrology errors on the µi, the global distribution is
replaced with the expression

P ′(f̃ |k) =

∫

P (f̃ |k,x)π(x)dx, (12)

where x represents the set of geometry variables and π(x)
is their prior probability density function. For simplic-
ity, for each geometry parameter x, π(x) is taken to be a
uniform distribution centered at the measured x with a
width of twice the error ∆x, so that the integral (12) re-
duces to an average over x. Independent measurements

of each component k
N(8)
jm are then obtained by integrat-

ing P ′(f̃ |k) over all other components. The result is a
distribution for the chosen component with a single mean
and standard deviation, which constitute the estimated
component measurement and its error.
Table IV displays the final results obtained from this

joint HUST-IU analysis for the 22 independent coeffi-

cients k
N(8)
jm for LV in the Sun-centered frame. The re-

sults are consistent with no LV force varying according to
the inverse sixth power, at the level of 10−12 m4. These
measurements are the first of their kind, and they set a
benchmark excluding short-range LV gravitational forces
down to a distance scale of below a millimeter. They
thereby enhance the scope of recent constraints on LV
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operators in pure gravity with d = 4 [9, 29–47] d = 5
[48, 49], d = 6 [6–8, 11, 39, 42, 48] d = 7 [48], d = 8 [39],
and d = 10 [50].
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[3] V.A. Kostelecký and N. Russell, Data Tables for Lorentz

and CPT Violation, 2018 edition, arXiv:0801.0287v11.
[4] For reviews see, A. Hees, Q.G. Bailey, A. Bourgoin, H.

Pihan-Le Bars, C. Guerlin, and C. Le Poncin-Lafitte,
Universe 2, 30 (2016); J.D. Tasson, Rept. Prog. Phys. 77,
062901 (2014); C.M. Will, Liv. Rev. Rel. 17, 4 (2014);
R. Bluhm, Lect. Notes Phys. 702, 191 (2006).

[5] For reviews see, for example, J. Murata and S. Tanaka,
Class. Quant. Grav. 32 033001 (2015); J. Jaeckel and
A. Ringwald, Ann. Rev. Nucl. Part. Sci. 60, 405 (2010);
E.G. Adelberger, J.H. Gundlach, B.R. Heckel, S. Hoedl,
and S. Schlamminger, Prog. Part. Nucl. Phys. 62, 102
(2009); E. Fischbach and C. Talmadge, The Search for

Non-Newtonian Gravity, Springer-Verlag, 1999.
[6] J.C. Long and V.A. Kostelecký, Phys. Rev. D 91, 092003
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Phys. Rev. D 94, 056008 (2016).

[18] E.P. Wigner, Group Theory, Academic, New York, 1959.
[19] W.-H. Tan, S.-Q. Yang, C.-G. Shao, J. Li, A.-B. Du, B.-

F. Zhan, Q.-L. Wang, P.-S. Luo, L.-C. Tu, and J. Luo,
Phys. Rev. Lett. 116, 131101 (2016).

[20] S.-Q. Yang, B.-F. Zhan, Q.-L. Wang, C.-G. Shao, L.-C.
Tu, W.-H. Tan, and J. Luo, Phys. Rev. Lett. 108, 081101
(2012).

[21] C.-G. Shao, Y.-F. Chen, Y.-J. Tan, W.-H. Tan, J. Luo,
S.-Q. Yang, and M.E. Tobar, Phys. Rev. D 94, 104061
(2016).

[22] J.C. Long, in V.A. Kostelecký, ed., CPT and Lorentz
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