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We characterize a fluxonium qubit consisting of a Josephson junction inductively shunted with
a NbTiN nanowire superinductance. We explain the measured energy spectrum by means of a
multimode theory accounting for the distributed nature of the superinductance and the effect of the
circuit nonlinearity to all orders in the Josephson potential. Using multiphoton Raman spectroscopy,
we address multiple fluxonium transitions, observe multilevel Autler-Townes splitting and measure
an excited state lifetime of T1 = 20 µs. By measuring T1 at different magnetic flux values, we find
a crossover in the lifetime limiting mechanism from capacitive to inductive losses.

The development of superinductors [1–5] has received
significant interest due to their potential to provide noise
protection in superconducting qubits [6–8]. Moreover,
inductively shunted Josephson junction based supercon-
ducting circuits are known to be immune to charge noise
[1], and to flux noise in the limit of large inductances
[9–12]. Despite remarkable progress, the superinduc-
tances that have been so far reported in the literature
are still small compared to those needed for qubit pro-
tection [7, 8, 11, 12].

A thin-film nanowire built from a disordered super-
conductor constitutes an alternative approach to reach
the required superinductance regime. High-kinetic in-
ductance superconducting materials, such as NbTiN and
TiN, have been studied in the context of microwave detec-
tors [13–15], parametric amplifiers [16–18] and rfSQUID
qubits [19, 20]. In a nanowire, the inertia of the Cooper
pair condensate is manifested as the kinetic inductance
of the superconducting wire, and can be expressed as

Lk =

(
m

2e2ns

)(
l

wd

)
, (1)

where m is the free electron mass, e is the electron charge
and ns is the density of Cooper pairs [14, 21]. The sec-
ond bracketed term in Eq. (1) is a geometric factor de-
pendent on the length l, width w, and thickness d of the
nanowire. By choosing a disordered superconductor with
a low ns and fabricating a sufficiently long and thin wire,
the kinetic inductance can be made large enough to reach
the superinductance regime. In this regime, the presence
of stray ground capacitance and the large kinetic induc-
tance lower the frequencies of the self-resonant modes of
the device. As is the case of long junction arrays [2], the
multimode structure of the device needs to be taken into
account to produce an accurate theoretical description
[22, 23].

In this Letter, we demonstrate a fluxonium circuit in-
tegrating a NbTiN nanowire superinductance. We char-
acterize the effect of the nanowire modes on the qubit
spectrum with a multimode circuit theory accounting for
the distributed nature of the superinductance. Impor-
tantly, and in contrast to previous approaches tailored to
weakly anharmonic qubits [24, 25], our theory incorpo-
rates the circuit nonlinearity to all orders in the Joseph-

son potential. Such difference allow us to treat the strong
anharmonicity of the fluxonium qubit efficiently, and to
retain the effect of charge dispersion in the multimode
Hamiltonian.
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FIG. 1. (a) The circuit diagram for the qubit, with the first
antisymmetric standing wave nanowire mode in blue. ψ(x, t)
denotes the flux operator as a function of the dimensionless
coordinate x = x/l. An off-chip coil generates the magnetic
flux (Φext) that is threaded through the loop formed by the
nanowire and the junction. Cg and C0 are the coupling ca-
pacitances to the readout resonator and to ground, respec-
tively. (b) The first few fluxonium eigenstates plotted for
Φext/ϕ0 = −0.38π, and the respective qubit potential with
wells around φ/ϕ0 = −2π and φ/ϕ0 = 0, where ϕ0 = ~/2e.
(c) False colored image of the device with the NbTiN nanowire
shown in blue, the single Josephson junction and gate capac-
itors in red, the readout resonator in purple and the input
transmission line in green.

A simplified circuit schematic of the nanowire superin-
ductance fluxonium is shown in Fig. 1 (a). In contrast
to standard fluxonium devices, where a lumped element
inductor shunts the Josephson junction [1, 3, 4, 26–28],
our circuit model takes into account the fact that the
nanowire superinductor is a high-impedance transmission



line. We present data from measurements of three devices
fabricated on two different films. The nanowires in de-
vices 1 and 2 have widths of 110 and 40 nm, respectively,
equal lengths of 730µm and a film thickness of 15 nm.
The nanowire in device 3 is fabricated on a 10 nm thick
film, has a width of 100 nm and length of 630µm. All
the nanowires are fabricated by etching a wire pattern
into the NbTiN film, with a single Al/AlOx/Al junc-
tion connecting the two ends of the superinductor to-
gether. The qubit on devices 1 and 2 is capacitively
coupled to a lumped element Nb resonator, with reso-
nance frequency ωr/2π = 6.08 GHz and a loaded quality
factor of Q = 8, 400. The qubit on device 3 is coupled
to a half-wavelength coplanar waveguide resonator with
Q = 14, 800 and ωr/2π = 7.50 GHz. An optical image of
device 1 is shown in Fig. 1 (c).

The fluxonium energy spectrum is obtained by per-
forming two-tone spectroscopy measurements as a func-
tion of the external magnetic flux, Φext. The amplitude
of the transmitted power is monitored at the dressed
cavity frequency while sweeping a second spectroscopic
tone of frequency ωspec/2π. The measurement results are
shown in Fig. 2. Labeling the energy eigenstates within
a single potential well as |gi〉 , |ei〉 , |fi〉 , ..., where the in-
dex i indicates the potential well to which these belong
[see Fig. 1 (b)], the fluxonium transitions are classified
in two types: intra-well plasmons, such as |g0〉 → |e0〉 ,
and inter-well fluxons, such as |g0〉 → |g−1〉. Parity se-
lection rules of the fluxonium circuit allow for transitions
between adjacent plasmon states by absorption of a sin-
gle photon. However, the direct transition |g0〉 → |f0〉
can only be completed via a two-photon process in which
|e0〉 serves as an intermediate virtual state. We note that
devices 1 and 2 operate in a similar parameter regime to
“heavy fluxonium” [9, 29], where the ratio between the
Josephson (EJ) and charging (EC) energies is large. As
a consequence, transitions between the fluxonium poten-
tial wells are exponentially attenuated. Therefore, such
excitations are most clearly visible in the regions where
they hybridize with the plasmon energy levels.

Fig. 2 (a) shows the presence of a second fluxonium
mode for device 1 at 16.3 GHz. While similar character-
istics have been observed in previous fluxonium devices,
high-frequency modes have been so far phenomenologi-
cally modeled as harmonic oscillators linearly coupled to
the qubit degree of freedom [1]. Here we go beyond such
an approximation and derive a multimode Hamiltonian
considering the complete device Lagrangian, which ac-
counts for the distributed nature of the superinductance.
Importantly, we find that the qubit spectrum is deter-
mined by the nonlinear interaction of the circuit modes
which are antisymmetric at the Josephson junction ports
[see Fig. 1 (a)]. The agreement with the measured data
is excellent over a very large frequency range.

The nanowire is described as a homogeneous transmis-
sion line with distributed capacitance c = Cnw/2l and
inductance l = Lnw/2l, where Cnw, Lnw and 2l are, re-
spectively, the total ground capacitance, inductance and
length of the nanowire. Defining the flux operator ψ(x, t)
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FIG. 2. Two-tone spectroscopy of device 1 (a) and device 2
(b) as a function of Φext. The experimentally measured tran-
sition frequencies are indicated with blue markers. The result
of a fit to the two-mode Hamiltonian in Eq. (5) and detailed
in Ref. [30], is shown with red dashed lines corresponding to
the fluxonium spectrum and with purple dashed lines indi-
cating sideband transitions [31]. In (a), the inscription “JJ
mode” (Josephson junction mode) identifies the second anti-
symmetric nanowire mode.

in terms of the dimensionless coordinate x = x/l, the
nanowire Lagrangian can be written as

Lnw =

∫ 1

−1

dx
(Cnw/2)

2
ψ̇(x, t)2 − 1

2(Lnw/2)
ψ(x, t)2. (2)

Additionally, we consider gate capacitances (Cg) placed
at the two ports of the device (xp = ±1) with respective
driving voltages {Vxp}, as well as ground capacitances
(C0). The Lagrangian of the inductively shunted Joseph-
son junction then reads

L =
∑
xp

Cg
2

(
ψ̇(xp, t)− Vxp

)2
+
C0

2
ψ̇(xp, t)

2

+ Lnw +
CJ
2
δ̇ψ(t)2 + EJ cos(δψ(t)/ϕ0),

(3)

where

δψ(t)/ϕ0 = (∆ψ(t) + Φext)/ϕ0, (4)

is the gauge-invariant superconducting phase difference
across the junction, ∆ψ(t) = ψ(1, t)−ψ(−1, t) is the flux
operator difference at the boundaries of the superinduc-
tor, and EJ is the Josephson energy [32, 33].

To obtain a tractable theoretical description of our de-
vice, we map Eq. (3) into the Lagrangian of an infinite
number of nonlinearly interacting normal modes [30]. We



observe that modes which are symmetric at the junction
ports are not coupled to the Josephson nonlinearity, and
thus do not contribute to the qubit Hamiltonian. We
therefore derive a multimode Hamiltonian for the anti-
symmetric normal modes, which is later truncated to a
finite number of modes. The truncation is possible due
to the fact that only few antisymmetric modes lie in the
frequency range of interest. Furthermore, the effective
normal mode impedance decreases quickly with the mode
number such that high-frequency modes are only weakly
anharmonic.

We find that the spectra of our devices can be accu-
rately described by a two-mode Hamiltonian of the form

Htwo-mode =
(q0 − qg0)2

2C̃0

+
φ20

2L̃0

+
(q1 − qg1)2

2C̃1

+
φ21

2L̃1

− φ0φ1
LJ

− EJ cos

(
φ0 + φ1
ϕ0

+
Φext

ϕ0

)
,

(5)

where C̃i, L̃i and qgi are, respectively, the effective ca-
pacitance, inductance and offset charge corresponding to
the first two antisymmetric modes labeled by i = {0, 1},
and LJ = EJ/ϕ

2
0. The definitions of the various param-

eters in Eq. (5) is provided in Ref. [30]. The results in
Fig. 2 are obtained by numerical diagonalization of the
complete Hamiltonian of the device, including Eq. (5),
the resonator Hamiltonian and the interaction between
such systems [30].

From our two-mode fit to the qubit spectrum, we find
nanowire inductances of 121 nH, 314 nH and 309 nH
for devices 1, 2 and 3, respectively, and corresponding
characteristic impedances (Znw =

√
Lnw/Cnw) of about

1.85 kΩ, 7.38 kΩ and 12.43 kΩ. The inductance values
from the fit are within 7 % of the theoretical prediction
given by Eq. (1) [30]. Table I provides the Hamiltonian
parameters extracted from a single-mode fit allowing di-
rect comparison to previous implementations of JJ array
based fluxonium devices [1, 3, 9, 10, 29].

Device EC [GHz] EL [GHz] EJ [GHz]

1 0.89 1.37 10.95

2 0.56 0.52 16.16

3 1.90 0.53 5.90

TABLE I. Device parameter table obtained from a single-
mode fit to the fluxonium qubit spectrum, for devices 1, 2,
and 3.

In devices 1 and 2, the small dipole element between
the fluxon states makes it experimentally challenging to
directly drive the |g−1〉 → |g0〉 transition. By using mul-
tiple drives, we are able to transfer the ground state pop-
ulation between the neighboring wells using the interme-
diate |h0〉 state, which is located close to the top of the
barrier and has spectral weight in both wells. We ap-
ply three coherent and simultaneous drives of frequen-
cies ωα/2π, ωβ/2π and ωγ/2π, respectively, targeting

the |g0〉 → |f0〉 (two-photon), the |f0〉 → |h0〉 (one-
photon) and the |h0〉 → |e−1〉 (one-photon) transitions
[see Fig. 3(a)].

At Φext/ϕ0 = −0.46π, we set Ωγ = 0 and simulta-
neously vary ωα/2π and ωβ/2π around the |g0〉 → |f0〉
and |f0〉 → |h0〉 transitions. We observe a vertical band
corresponding to the |g0〉 → |f0〉 transition at 7.8 GHz,
and a diagonal band with a slope of ωα/ωβ = −1/2,
corresponding to the Raman transition between the |g0〉
and |h0〉 states [Fig. 3 (a)]. Around the resonance con-
dition (2~ωα ≈ Ef0 − Eg0 and ~ωβ ≈ Eh0

− Ef0), the
two bands exhibit an avoided crossing, which is the hall-
mark of the Autler-Townes doublet previously observed
in other superconducting qubits [34–37]. Next, we fix the
frequency of the α tone at ∆α/2π = 20 MHz, turn on the
γ drive and simultaneously scan the frequencies ωβ/2π
and ωγ/2π. Figure 3 (b) displays the resulting Autler-
Townes splitting, where the Raman transition manifests
itself here with a slope of ωγ/ωβ = +1, corresponding
to the three-drive Raman condition. This method allows
us to experimentally determine the energy levels of the
fluxonium qubit using population transfer.
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FIG. 3. The multitone spectroscopy data, taken at Φext/ϕ0 =
−0.46π, demonstrating population transfer between |g0〉 and
|h0〉 (a) with Ωγ = 0, and |h0〉 to |e−1〉 (b) with fixed
ωα/2π = 7.78 GHz. The white dashed lines indicate the max-
imum population from a multi-level master equation simula-
tion [30]. (c) A schematic diagram of the device 2 level struc-
ture in the presence of coherent external drives. The drives,
with frequencies ωi/2π and amplitudes Ωi are detuned from
the levels by ∆i/2π. (d) Three sequential π pulses (σ = 15 ns)
are applied at the transition frequencies to perform T1 mea-
surements of the |g−1〉 state. The demodulated homodyne
voltage from the readout resonator is measured as a function
of twait.

With complete information regarding the energy of the
fluxonium excited states, we determine the relaxation
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FIG. 4. (a) Low frequency spectroscopy data from device 3.
(b) T1 (red) and T2Ramsey (blue) data taken at Φext/ϕ0 = −π.
(c) T1 as a function of qubit frequency. The lines represent
the theory fits for total (red), inductive (blue) and capacitive
(green) T1. The T1 values were obtained with both pulsed
and mixed state driving. Measurements using both types of
excited state preparation at the same flux gave the same value
of T1.

rate of the |g−1〉 state by performing time-resolved mea-
surements [38]. We use the frequency values obtained
from the Raman spectroscopy and perform a pulse se-
quence which consists of three sequential π-pulses at
the transition frequencies (Ef0 − Eg0) /h, (Eh0

− Ef0) /h
and

(
Eh0 − Ee−1

)
/h to prepare the system in the |e−1〉

state. At the end of this procedure, the system relaxes
into the |g−1〉 state, on the time scale of the plasmon T1
(∼ 600 ns). On a longer timescale, the system relaxes
back to |g0〉. For twait � T1e0 , the reduction in |g−1〉
population follows an exponential decay with T1g−1 = 20
µs.

Due to the high EJ/EC ratio, devices 1 and 2 lack flux
insensitive sweet spots at zero and half flux. In order to
fully characterize the coherence properties of the qubit
and demonstrate coherent control between the fluxon
states, we reduced the EJ/EC ratio in device 3. The
overlap between the fluxon wavefunctions is made suffi-
ciently large to directly observe the transition with a one-
photon drive, which comes at the cost of increased sen-
sitivity to different relaxation mechanisms. The low fre-
quency, two-tone spectroscopy data for device 3 is shown
in Fig. 4. At Φext/ϕ0 = −π, the spectrum shows a flux-
insensitive fluxon transition, where we perform coherence
measurements and find T1 = 220 ns, T2Ramsey = 380 ns
and T2Echo ≈ 2T1 indicating that the qubit dephasing is
dominated by qubit relaxation.

By changing Φext, we measure T1 of the fluxon tran-
sition as a function of qubit frequency. The data show
an increase in T1 as the qubit frequency is increased to a

maximal value of 7 µs for frequencies between 2-3 GHz.
Upon further increasing the qubit frequency, T1 decreases
by an order of magnitude (Fig. 4c).

To understand the T1 frequency dependence, we take
into account inductive and capacitive loss mechanisms,
which can be described with the following expressions,

Γind =
EL
~QL

(
coth

(
~ωq

2kBT

)
+ 1

)
| 〈g−1| ϕ̂ |g0〉 |2 (6)

Γcap =
~ω2

q

8ECQC

(
coth

(
~ωq

2kBT

)
+ 1

)
| 〈g−1| ϕ̂ |g0〉 |2

(7)
where | 〈g−1| ϕ̂ |g0〉 |2 is the transition matrix element
between the fluxon states, QL and QC are the induc-
tive and capacitive quality factors, respectively, kB is
the Boltzmann constant, T is the temperature and ωq
is the fluxon transition frequency [39]. Based on previ-
ously reported measurements [3], the lifetime limitation
from non-equilibrium quasiparticles is at least an order of
magnitude larger than the observed relaxation times at
all frequencies and is therefore not considered. Radiative
loss due to the Purcell effect [40] is only significant when
the qubit frequency is within ∼ 50 MHz of ωr/2π = 7.5
GHz [30]. Fig. 4c shows the measured T1 (blue markers)

values along with the fitted T1 =
(
Γ−1
cap + Γ−1

ind

)−1
(red

line). The fit of T1 vs ωq in Fig. 4, gives QL = 39, 000 and
QC = 15, 100, where the lifetime at low ωq is dominated
by inductive loss and at high ωq by capacitive loss. The
inductor can be modeled as a lossless inductor in series
with a frequency dependent resistor, where R = ωL/Qind

corresponds to R = 27 mΩ at ω/2π = 550 MHz. The pos-
sible sources of the inductive loss can arise from a finite
contact resistance between the NbTiN wire and the Al
Josephson junction leads, loss from charge impurities on
the surface of the wire, or some intrinsic loss from the
bulk NbTiN material. In future devices, the geometry
of the Al/NbTiN contact and nanowire dimensions could
be modified to better determine what limits the induc-
tive quality factor. Improvements to QC could be made
by moving to a 3-D architecture, where the electric field
participation at lossy interfaces is reduced [41].

In conclusion, we have fabricated and measured a
nanowire superinductance fluxonium qubit. We find that
the transition energy levels are modified due to the dis-
tributed nature of the nanowire, which is well explained
in the framework of a multimode theory. As the modes of
the nanowire strongly depend on the parasitic and stray
capacitances of the wire, using a shorter wire with higher
sheet inductance (for example high quality granular alu-
minum films with one hundred times larger Lk = 2 nH/�
[42–44]), or integrating the fluxonium into a 3D cavity or
waveguide [45], could reduce unwanted capacitances and
help to push the nanowire self-resonant modes to higher
frequencies. The multimode theory developed here is an
important step towards understanding large circuits be-
yond the lumped element approximation, such as the



0 − π qubit [7, 8], where the distributed nature of the
circuit elements is critical to device design.

ACKNOWLEDGMENTS

We thank Andrei Vrajitoarea, Zhaoqi Leng and Jérôme
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