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We experimentally realize a universal set of single-bit and two-bit geometric quantum gates by
adiabatically controlling solid-state spins in a diamond defect. Compared with the non-adiabatic
approach, the adiabatic scheme for geometric quantum computation offers a unique advantage of
inherent robustness to parameter variations, which is explicitly demonstrated in our experiment
by showing that the single-bit gates remain unchanged when the driving field amplitude varies by
a factor of two or the detuning fluctuates in a range comparable to the inverse of the gate time.
The reported adiabatic control technique and its convenient implementation offer a paradigm for
achieving quantum computation through robust geometric quantum gates, which is important for
quantum information systems with parameter-fluctuation noise such as those from the inhomoge-
neous coupling or the spectral diffusion.

Introduction.— When a quantum system undergoes a
cyclic evolution in a parameter space, a nondegenerate
quantum state picks up not only a dynamical phase but
also a geometric phase [1]. Different from the dynamical
phase that depends on the energy of a state, a geomet-
ric phase is solely related to the geometric structure of
the enclosed path. For degenerate states, the geometric
phase is replaced with a geometric unitary operator [2],
termed as the holonomy in differential geometry. The ge-
ometric phase or the holonomy plays a key role in many
physical phenomena and applications, such as topologi-
cal effects [3] and the engineering of artificial gauge fields
in cold atoms [4].

An important application of holonomies is to realize
all-geometric quantum computation [5, 6], whose ba-
sic requirement is a universal set of geometric quantum
gates, containing a non-abelian set of single-bit and two-
bit operations. By use of non-adiabatic cyclic evolutions
[7], recent experiments have reported the realization of
non-abelian single-qubit operations [8–10] and a univer-
sal set of quantum gates [11, 12] by non-adiabatic geo-
metric means in several physical systems. A related but
different-concept geometric gate has also been realized
earlier with two coupled ions using non-adiabatic laser
manipulation of the ions’ motion [13]. In the adiabatic
approach to geometric quantum computation, the gates
only depend on the ratio of parameters and are therefore
robust to fluctuation of their absolute values [5, 6, 14–
18]. This important advantage, however, is not shared
by the non-adiabatic approach [7–12]. To implement the
adiabatic geometric gates, schemes have been proposed
in several physical systems, including trapped ions [16],
superconducting qubits [17] and quantum dots [18]. In
experiments, single-qubit adiabatic geometric rotation
along the z axis has been realized with an electron
spin resonance system [14]. Non-abelian single-bit adi-
abatic geometric gates have been realized recently with
a trapped ion [15], and this realization requires manip-

ulation of four coupled levels following the approach in
[16] and cannot be easily extended to other systems due
to its level complication. The realization of a universal
set of both single-bit and two-bit entangling gates all by
adiabatic geometric means in a single experiment is still
lacking due to the challenging requirement of exquisite
control of complicated level structure.

Here, we report the realization of both single-bit and
two-bit geometric quantum gates, which together make
a universal gate set, all by adiabatically manipulating
solid-state spins of a diamond defect using a significantly
simplified level structure. We achieve high gate fidelities
and demonstrate explicitly in experiments that all the
single-bit geometric gates are robust against significant
parameter variations in the coupling rate and the fre-
quency detuning, which are an important source of noise
for some quantum information platforms.
Implementation of geometric quantum gates through

adiabatic evolution.—We consider a paradigmatic Hamil-
tonian describing a spin in an external magnetic field

HB(t) = B(t) · σ, (1)

where σ is a vector of Pauli matrices and
B(t) = B(t)n(t) with n(t) = sin θ(t) cosφ(t)ex +
sin θ(t) sinφ(t)ey + cos θ(t)ez varying adiabatically in
time. The Hamiltonian has two instantaneous eigen-
states |Ψ−(t)〉 = sin(θ(t)/2)e−iφ(t)|0〉 − cos(θ(t)/2)|1〉
and |Ψ+(t)〉 = cos(θ(t)/2)|0〉 + sin(θ(t)/2)eiφ(t)|1〉 with
eigenenergies being E±(t) = ±B(t). As we vary the
parameter B adiabatically and cyclically, a state initially
prepared at the eigenstate |Ψ±(0)〉 ends up acquiring
both a dynamical phase and a geometric phase, i.e.,

|Ψ±(τ)〉 = e∓i(γg+γd)|Ψ±(0)〉, (2)

where γd =
∫ τ

0
E+(t)dt is the dynamical phase and

γg = −i
∫ τ

0
dt〈Ψ+(t)|∂t|Ψ+(t)〉 is the geometric phase.

By varying the direction n0 ≡ n(t = 0), we can set
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FIG. 1. Relevant Energy levels and microwave shape
schemes for the adiabatic geometric single-qubit gates
in a diamond NV center. a, The relevant energy level
structure of the electron spin in an NV center under a mag-
netic field. The two levels encoding a qubit are coupled by a
microwave pulse with the Rabi frequency Ω and the detuning
∆. b, The microwave pulse shape used to achieve a geomet-
ric single-qubit rotation operation along the x axis. Ω(t) is in
the form of Ω(t)/Ωm = 1 − | sin(2πt/T )|n [27] with Ωm, T
and n being the maximum value of |Ω|, the gate time, and a
positive integer, respectively. We take n = 5 for our experi-
ment. ∆(t) consists of piecewise linear functions of time with
the sign being suddenly reversed at t = T/4 and 3T/4 and
∆m is its maximal value. Phase shifts ∆φ1 = π + φ/2 and
∆φ2 = −π − φ/2 are inserted into the microwave at t = T/4
and 3T/4, respectively. c, The microwave pulse shape used
to realize a rotation operation about the z axis. A phase
∆φ = π + φ/2 is inserted into the microwave at t = T/2. d,
Evolution of a state initialized to an instantaneous eigenstate
of the Hamiltonian (4) in the Bloch sphere, showing the ge-
ometric phase which equals half of the enclosed solid angle
φ. The green and purple arrows denote the initial eigenstate
respectively for scheme shown in b and c.

|Ψ±(0)〉 as eigenstates of non-commuting operators in dif-
ferent cycles, and hence realize non-abelian holonomies
when composing these cycles. In our experiment, we
are able to remove the dynamical phase γd by suddenly
tuning a control microwave pulse [19], ending up with a
purely geometric unitary operation

U = e−iγgn0·σ, (3)

a rotation around the n0 axis. By selecting n0 appropri-
ately, we can realize a universal set of single-qubit quan-
tum operations: Zπ/2, Zπ/8, and Xπ/2, corresponding to
rotations with respect to the z and x axes, respectively.

In our experiment, we realize a universal set of all-
geometric quantum gates including single-qubit and con-
trolled π-rotation (CROT) operations by controlling

Fidelities of single-qubit adiabatic gates measured by quantum state tomography

Initial state | ۧ0 | ۧ1 | ۧ0 +| ۧ1 | ۧ0 − i| ۧ1 | ۧ0 −| ۧ1 | ۧ0 +i| ۧ1 Average

𝑍𝜋/2 gate fidelity 0.988(8) 0.97(1) 0.975(7) 0.992(5) 0.98(1) 0.993(4) 0.98(1)

𝑍𝜋/8 gate fidelity 0.996(5) 0.97(1) 0.998(7) 0.992(2) 0.997(4) 0.98(1) 0.988(7)

𝑋𝜋/2 gate fidelity 0.96(2) 0.98(1) 0.983(6) 0.98(1) 0.959(7) 0.98(1) 0.97(1)
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FIG. 2. Measured fidelity for the adiabatic geometric
singe-qubit gates. a, Average fidelity as a function of the
number of gates. Orange circles, green diamonds and pur-
ple triangles denote the results from a standard randomized
benchmarking (RB) protocol, a interleaved Zπ/2 and a in-
terleaved Xπ/2 gate, respectively. Each point in the figure
is obtained by averaging the experimental data from twenty
measurements. These points are fitted by F = Apm+B plot-
ted as solid lines with the corresponding colors. b, Fidelity of
the final states measured by the quantum state tomography
for Zπ/2, Zπ/8 and Xπ/2 gates acting on six distinct initial
states. For each gate, the parameters of microwave pulses are
T = 1 µs, Ωm = 20 MHz and ∆m = 20 MHz. Note that the
number in the bracket following the fidelity value represents
the error bar (s.d.) in the last decimal place.

solid-state spins in a diamond defect at room temper-
ature. The electron and nuclear spins around the neg-
atively charged nitrogen vacancy (NV) center in the di-
amond are used to realize a local quantum spin regis-
ter [20], which, combined with the photonic coupling
between remote quantum registers [21, 22], provides a
scalable system for solid-state quantum information pro-
cessing [23, 24]. The NV center possesses a spin triplet
ground state with a zero-field splitting D = 2.87 GHz be-
tween ms = 0 and ms = ±1 states. Under an magnetic
field Bz = 502 G, which is tuned to be along the NV
axis through the angle-sensitive fluorescence counts [25],
the degeneracy of two states with ms = ±1 is lifted. We
can therefore select |ms = 0〉 ≡ |0〉 and |ms = −1〉 ≡ |1〉
states as the computational basis. The spin state is ini-
tialized to the |0〉 level by optical pumping and read out
by identifying distinct fluorescence levels of the states
after a short illumination of a green laser pulse [20].

We apply microwave pulses to couple the |0〉 and |1〉
qubit states as shown in Fig. 1; the coupling can be de-
scribed by the Hamiltonian

H(t) =
Ω(t)

2
σx −

∆(t)

2
σz, (4)
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FIG. 3. Experimental results demonstrating robust-
ness of adiabatic geometric single-qubit gates with re-
spect to variations of Ωm (the random coupling) and
δ (the spectral diffusion). The detuning is modeled by
∆(t) + δ. Normalized photon luminance as a function of the
imprinted phase φ under three distinct values of δ and Ωm
respectively for the rotation operation along the x axis (a-b )
and the rotation operation along the z axis (c-d). The other
parameters are ∆m = 20 MHz, T = 1 µs, and Ωm = 20 MHz
in a and c, while in b and d ∆m = 20 MHz, T = 1 µs, and
δ = 0 MHz. Note that for the Z rotation gate, two half π
pulses around the x axis are applied in front and after the
target gate in order to transfer the phase information to the
photon luminance count.

where Ω(t) is the Rabi frequency and ∆(t) is the detuning
defined as ∆(t) = ω(t)−ω0 with ω(t) being the frequency
of the microwave pulse and ω0 = D − γeBz (γe = 2.8
MHz/G) being the energy difference between the |0〉 and
|1〉 levels. Here ~ is set to 1. Both Ω(t) and ∆(t) can be
readily tuned through an arbitrary waveform generator.

In our experiment, we realize geometric rotation gates
Xπ/2, Zπ/2 and Zπ/8 through adiabatic manipulation of
∆(t) and Ω(t). The former two gates, when combined,
give the Hadamard gate H and the NOT gate N as
H = Xπ/2Zπ/2Xπ/2 and N = X2

π/2, which, together

with the π/8-gate A = Zπ/8, make a universal set of
single-qubit gates. In order to perform the Xπ/2 gate, we
adiabatically tune |Ω(t)| and ∆(t) following the scheme
shown in Fig. 1b; this type of pulse is known as the BIR-4
pulse in nuclear magnetic resonance [26]. At t = T/4 and
3T/4, phase shifts ∆φ1 = π + φ/2 and ∆φ2 = −π − φ/2
are suddenly imprinted in the microwave pulse, respec-
tively, with the sign of ∆ being flipped simultaneously.
While this sudden tuning flips the sign of the coupling
Hamiltonian, the state remains unchanged. If a state is
initialized to an instantaneous eigenstate, it remains an
eigenstate of the new flipped Hamiltonian but with the
opposite energy. So the adiabaticity of the state evo-

lution is maintained. The abrupt change of the sign of
energy enables us to remove the contribution from the
dynamical phase in an entire cycle. The state finally
picks up only a geometric phase γg = φ/2 as illustrated
in Fig. 1d. We see from Eq. (3) that a rotation operator
Xφ is realized under the cyclic evolution. When we set
φ = π/2, we make a Xπ/2 operator. For the adiabatic
condition [28] to be satisfied, we vary H(t) slowly to make

sure Q ≡ 2(∆2(t)+Ω2(t))3/2

|Ω̇(t)∆(t)−Ω(t)∆̇(t)| � 1. In our experiments we

have Q > 12 for all the geometric gates.

Analogous to the Xπ/2 gate, we realize the geomet-
ric Zπ/2 and Zπ/8 gates using the pulse shape shown in
Fig. 1c. At t = T/2, a phase of π + φ/2 is suddenly in-
troduced into the microwave pulse and the sign of ∆ is
flipped, resulting in a rotation operation about the z axis:
Zφ. The Zπ/2 and Zπ/8 gates are implemented when we
take φ = π/2 and π/8, respectively.

Experiments results for non-abelian single-qubit geo-
metric gates.— To characterize these geometric gates,
we apply them to distinct initial electron spin states
and measure the final states with quantum state tomog-
raphy [29]. We find the state fidelity (98.2 ± 0.4)%,
(98.9±0.3)% and (97.5±0.5)% respectively for the Zπ/2,
Zπ/8 andXπ/2 gates, which are obtained by averaging the
results for six complementary initial states as shown in
Fig. 2b. The major contribution to the infidelity comes
from the state preparation and detection errors, which
can be separately detected by the randomized bench-
marking method [30]. For the randomized benchmark-
ing, we concatenate m random dynamical Clifford gates
generated by {I, X±π/2, Xπ, Y±π/2, Yπ}, and a specific
recovery Clifford gate, and average the fidelities over 20
different series of operations. Fig. 2a shows the fidelity
decay as the number of gates increases. The decay is fit-
ted using the function F = Apm+B, where A and B ab-
sorb the preparation and measurement error and p repre-
sents the reference decay rate. We find p = 0.986± 0.002
from fitting. The intrinsic gate error can be calculated
by r = (1 − p)(d − 1)/d with d = 2n and n being the
number of qubits. The reference Clifford gate fidelity is
F = 1− r/1.875 = 0.996(1). To measure the target gate
fidelity, we interleave m target gates following each series
of random gates mentioned above for randomized bench-
marking and examine the fidelity decay when increasing
the number of gates. By fitting the data, we find the
decay rate of the target gate to be pZπ/2 = 0.969± 0.004
and pXπ/2 = 0.950± 0.008 respectively, and get the gate
error by rgate = (1− pgate/p)(d− 1)/d, giving the target
gate fidelity FZπ/2 = 0.991±0.002, FXπ/2 = 0.982±0.004
(Fig. 2a). The fidelities are mainly limited here by the
dephasing time T ∗2 = 2.5µs for our diamond sample with
1.1% C13 concentration. We expect that the gate fidelity
will be significantly improved with an isotopically puri-
fied diamond sample which has T ∗2 in the range of tens
of microseconds [31, 32].
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Robustness of adiabatic geometric single-qubit gates.—
The adiabatic geometric scheme ensures the robustness
of the realized gates against the variation noise of the
microwave amplitude Ωm and the spectral diffusion δ,
which can be caused, for instance, by the randomness
in the coupling rate or the spectral diffusion, an impor-
tant source of noise for some solid-state systems. This
robustness can be seen from Eq. (3) that a single-qubit
operation is solely determined by the initial direction n0

and the Berry phase γg = φ/2. For Zφ, it is irrelevant
to variations of Ωm and δ. For Xφ, while the initial di-
rection n0 can be slightly changed by fluctuations of δ,
this effect can be strongly suppressed by taking a large
Ωm. In experiments, to evaluate this robustness for both
X and Z gates, we measure the final state as a function
of the imprinted phase φ as we vary the values of Ωm
and δ, where the detuning is modeled by ∆(t) + δ. We
plot the results in Fig. 3, demonstrating that the final
state characterized by the normalized photon luminance
remains almost the same as Ωm varies up to twice or δ
fluctuates with δ & 1/T . This confirms the resilience
of our implemented gates. We would like to emphasize
that our adiabatic results are in stark contrast to non-
adiabatic ones in previous experiments, where the ampli-
tude of microwave or optical pulses and their detuning
are required to be precisely calibrated and controlled for
achieving high-fidelity gates [8–12, 33].

Experiments results for entangling geometric gates.—
To implement the geometric quantum two-qubit CROT
gate, we use a nearby C13 nuclear spin as a control qubit
with two basis vectors denoted by | ↑〉 and | ↓〉 and the
NV center electron spin as a target qubit. The system
is initially polarized to the |0, ↑〉 state through optical
pumping under a 502 G magnetic field along the NV
axis [34, 35]. To drive the state |0, ↓〉 out of our compu-
tational space, leaving behind the |0, ↑〉 state, we further
apply a MW0 pulse to excite the |0, ↓〉 state to the irrel-
evant |a, ↓〉 level (|a〉 ≡ |ms = +1〉 is used as an ancillary
level) as shown in Fig. 4a. Under the control microwave
pulse, the effective Hamiltonian of the two-bit system has
the form [11, 33]:

H2 = H↑ +H↓, (5)

where

Hσ =
Ω(t)

2
(|1σ〉〈0σ|+H.c)−∆σ(t)

2
(|0σ〉〈0σ|−|1σ〉〈1σ|),

(6)
with σ =↑, ↓, ∆↓ = ∆↑−ω1 and ω1 = 13.7 MHz in our ex-
periment, which is the difference between the frequency
of the resonant MW2 and MW1 as displayed in Fig. 4a.
We can apply the same microwave pulse as shown in
Fig. 1b to achieve a Xπ gate between the |0 ↑〉 and |1 ↑〉
levels without creating a geometric phase for a state in
the subspace of |0 ↓〉 and |1 ↓〉 if ∆↑ < ω1 is always satis-
fied. However, this method generates a dynamical phase
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Initial state | ۧ0, ↑ | ۧ1, ↑ | ۧ1, ↓ | ۧ0, ↓ | ۧ1 (| ۧ↑ −i| ۧ↓ ) | ۧ1 (| ۧ↑ +| ۧ↓ )

Final ideal state -i| ۧ1, ↑ -i| ۧ0, ↑ | ۧ1, ↓ | ۧ0, ↓ -i (|0, ۧ↑ + | ۧ1, ↓ ) -i|0, ۧ↑ + | ۧ1, ↓ )

Measured fidelity 0.989(3) 0.93(1) 0.95(1) 0.92(2) 0.88(4) 0.94(2)

FIG. 4. Level scheme, pulse sequence and experimen-
tal results for the geometric two-qubit CROT gate.
a, Energy level structure of the electron and nuclear spins for
the geometric CROT gate together with microwave and radio-
frequency (RF) coupling configuration. b, Time sequence for
implementing and detecting the CROT gate. We first use
a MW0 π pulse followed by illumination of a 532 nm green
laser pulse for 2 µs to initialize the system and then apply
MW1, MW2, and RF pulses to create a desired state. The
spin echo for implementation of the geometric CROT gate
is realized by simultaneously applying two π pulses denoted
as MW1 and MW2. Other parameters for the CROT gate
are n = 5, T = 2 µs, ∆m = 7 MHz and Ωm = 4 MHz.
Two-qubit quantum state tomography is used to measure the
fidelity of the final state. To avoid the decoherence of the
electron spin during the slow RF pulse, a spin echo of 1 MHz
is inserted in the middle of the quantum state tomography
process. c, Measured fidelity of the final states after apply-
ing the CROT gate to six complementary initial states. d,
Measured real and imaginary parts of the final state matrix
elements for the geometric CROT gate applied to the initial
state |1〉(| ↑〉+ | ↓〉) compared with the matrix elements under
the ideal gate represented by the hollow caps.

for a state in the latter subspace. To remove this phase,
we insert two spin echoes at t = T/4 and 3T/4, as shown
in Fig. 4b (see Methods for the realization of a controlled
rotation gate). This exactly achieves a CROT gate: a
rotation about the x axis for an electron spin only when
a nuclear spin is in the | ↑〉 level.

To characterize the CROT gate, we initialize the two-
qubit system to six complementary states and measure
the fidelity of the final states with quantum state tomog-
raphy after applying a CROT gate to these states. The
results are listed in Fig. 4c. For a typical initial product
state |1〉(| ↑〉 + | ↓〉), the CROT gate generates entan-
glement, yielding an entangled final state −i|0 ↑〉+ |1 ↓〉
with a measured fidelity of (94±2)% , slightly higher than
the fidelity of CNOT gate realized with non-adiabatic ge-
ometric pulses [11]. In Fig. 4d, we also show the mea-
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sured state matrix elements after the geometric CROT
gate, demonstrating good agreement with those under
the ideal gate. Our scheme for the adiabatic geometric
gate by itself is also robust to the parameter variation er-
rors similar to the single-bit case. However, in our exper-
iment we also need to apply spin echo pulses to prolong
the system coherence time for the two-bit gate, and these
echo pulses are not intrinsically robust if we do not have
a very high amplitude for the microwave field which is
the case here. In the supplementary materials, we show
by numerical simulation that if we neglect the errors of
the ancillary echo pulses, the adiabatic geometric gate by
itself is very robust to the parameter variation errors.

Summary.— We have realized a non-abelian set of
single-qubit and two-qubit adiabatic geometric quantum
gates with solid-state spins and demonstrate the unique
robustness of adiabatic gates to parameter variations.
Our technique to implement robust geometric quantum
gates based on convenient level configurations may also
find application in other scalable quantum systems, such
as trapped ions or superconducting qubits.
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