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We consider a quantum communication task between two users Alice and Bob, in which Alice
and Bob exchange their respective quantum information by means of local operations and classical
communication assisted by shared entanglement. Here, we assume that Alice and Bob may have
quantum side information, not transferred, and classical communication is free. In this work, we
derive general upper and lower bounds for the least amount of entanglement which is necessary to
perfectly perform this task, called the state exchange with quantum side information. Moreover,
we show that the optimal entanglement cost can be negative when Alice and Bob make use of their
quantum side information. We finally provide conditions on the initial state for the state exchange
with quantum side information which give the exact optimal entanglement cost.
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Introduction.— In quantum information theory, one
of the most traditional research topics has been source
coding problems of transmitting Alice’s quantum infor-
mation to Bob under various situations, with paradig-
matic examples including Schumacher compression [1]
and quantum teleportation [2]. A decade ago, Oppen-
heim and Winter devised a new type of a quantum com-
munication task named state exchange [3] — in which
Alice and Bob exchange their quantum information with
each other by means of local operations and classical
communication (LOCC) and shared entanglement — and
they studied the least amount of entanglement consumed
in the task when free classical communication is allowed.

In the original state exchange task, it is assumed that
both Alice and Bob do not have any quantum side infor-
mation (QSI) transferrable during the protocol. On the
other hand, most quantum communication tasks, includ-
ing state merging [4, 5] and state redistribution [6, 7], be-
gin with the assumption that either Alice or Bob has QSI.
For example, in the state merging task, Bob can make
use of his QSI for merging Alice’s information to himself,
and the minimum amount of entanglement needed for
merging turns out to be exactly given by the quantum
conditional entropy [8] conditioned on Bob’s QSI.

In this work we generalize in the state exchange to an
exchanging task allowing Alice’s and Bob’s QSI, which is
called the state exchange with quantum side information.
We consider three parties, Alice, Bob, and a referee (R),
sharing a pure initial state |ψ〉 ≡ |ψ〉ACABCBR

as depicted
in Fig. 1. The aim of Alice and Bob is to exchange their
quantum information CA and CB, while the referee does
nothing. To achieve their aim, Alice and Bob make use of
their QSI A and B, and they have additional systems Ein

A ,

FIG. 1: Illustration of state exchange protocol E with QSI.
Starting from an initial state |ψ〉ACABCBR

of Alice, Bob, and

a referee (R), Alice and Bob exchange their parts CA and
CB, exploiting their respective QSI A and B. The ancillary
systems Ein

A and Ein
B represent an initial entanglement con-

sumed for the exchanging task, while Eout
A and Eout

B indicate
entanglement generated from the task.

Eout
A and Ein

B , Eout
B for the use of entanglement resources.

Our main question can be formulated as follows: “Does
there exist a crucial difference in optimal strategies be-
tween the tasks of state exchange with and without QSI?”

To answer this question we formally define the state
exchange with QSI and its optimal entanglement cost in
the asymptotic scenario, and then derive an upper bound
for the optimal entanglement cost by conceiving a two-
step strategy based on the idea mentioned in Ref. [3].
We show that in general this strategy does not provide
the optimal entanglement cost of the state exchange with
QSI. However for a specific initial state of the state ex-
change with QSI, the upper bound shows that the opti-
mal entanglement cost for the state exchange with QSI
can be negative, meaning that entanglement is in fact
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gained rather than consumed in the protocol. This re-
sult is quite remarkable since the optimal entanglement
cost for the state exchange without QSI cannot be neg-
ative [3]. More importantly, this implies that the use of
Alice’s and Bob’s QSI can significantly reduce the opti-
mal entanglement cost of the exchanging task.

We furthermore consider an idealized situation in
which the referee plays a more active role and can help
Alice and Bob to exchange their information [3]. By
virtue of the referee’s assistance, it is possible for Alice
and Bob to more efficiently perform the state exchange
with QSI, and this provides us with converse bounds on
the optimal entanglement cost, which are lower bounds
for any achievable entanglement rate. As an application
of our bounds, we present conditions on the initial state
for the state exchange with QSI such that the exact op-
timal entanglement cost can be obtained.

State exchange with quantum side information.— In
the task of state exchange E with QSI as described in
Fig. 1, the global initial state ψi and the global final
state ψf are given by

ψi = ψ ⊗ ΦEin
AE

in
B

and ψf = ψ′ ⊗ ΦEout
A Eout

B
,

where ψ = |ψ〉 〈ψ|, ΦEin
AE

in
B

and ΦEout
A Eout

B
are

pure maximally entangled states with Schmidt
rank ein(E) and eout(E), respectively, ψ′ =(
1ABR ⊗ 1CA→C′

A
⊗ 1CB→C′

B

)
(ψ), and C ′B (C ′A) is

Alice’s system (Bob’s system) with dimC ′B = dimCB

(dimC ′A = dimCA). Then a joint operation

E : ACAE
in
A ⊗BCBE

in
B −→ AC ′BE

out
A ⊗BC ′AEout

B

is called the state exchange with quantum side informa-
tion of |ψ〉 with error ε, if it consists of LOCC, and sat-
isfies

‖(E ⊗ 1R) (ψi)− ψf‖1 ≤ ε,

where ‖ · ‖1 is the trace norm [8].
Let us now consider n independent and identically

distributed copies of |ψ〉, say |ψ〉⊗n. If En indicates a
state exchange with QSI of |ψ〉⊗n with error εn, then the
resource rate

(
log ein(En)− log eout(En)

)
/n is called the

entanglement rate of the protocol. If there is a sequence
{En}n∈N of state exchanges En with QSI of |ψ〉⊗n with
error εn such that

lim
n→∞

log ein(En)− log eout(En)

n
= er, lim

n→∞
εn = 0,

then the real number er is called an achievable entangle-
ment rate for the state exchange with QSI of |ψ〉. The
smallest achievable entanglement rate defines the optimal
entanglement cost eopt for the considered task.

Note that the optimal entanglement cost only depends
on the reduced state of Alice and Bob, as the Referee
does not play any active part in the protocol.

Merge-and-merge strategy.— We first present a merge-
and-merge strategy which is motivated by the merge-and-
send protocol introduced in Ref. [3]. The idea of this
strategy is as follows. Firstly, Alice’s part CA is merged
from Alice to Bob by using BCB as QSI. After finishing
merging CA, Bob’s part CB is merged from Bob to Alice
by using Alice’s QSI A so that Alice’s CA and Bob’s CB

are exchanged. By using the exact formula of the en-
tanglement cost for merging [6, 9, 10], we have that the
optimal entanglement costs of merging CA and merging
CB are the quantum conditional entropies H(CA|BCB)
and H(CB|A), respectively, so that the total entangle-
ment cost is H(CB|A)+H(CA|BCB), where the quantum
conditional entropy H(X|Y )ρ of a state ρXY is defined
by H(XY )ρ −H(Y )ρ, with H(X) the von Neumann en-
tropy [8] of a state ρX .

From the merge-and-merge strategy, we obtain the fol-
lowing upper bound for the optimal entanglement cost of
the state exchange with QSI.

Theorem 1. The optimal entanglement cost eopt for the
state exchange with QSI of |ψ〉 is upper bounded by

eopt ≤ u(ψ) = min{u1(ψ), u2(ψ)},

where u1(ψ) = H(CB|A)ψ + H(CA|BCB)ψ and u2(ψ) =
H(CA|B)ψ +H(CB|ACA)ψ.

Note that u2(ψ) in Theorem 1 can be obtained by
firstly merging Bob’s part CB to Alice. We further refer
the reader to Supplemental Material [11] for the rigor-
ous proof of Theorem 1 which fulfills the definition of
achievability.

Optimal strategy?— Since the merge-and-merge strat-
egy is simple and intuitive, one may guess that the strat-
egy is optimal for any initial state of the exchanging task.
However, the following example shows that there can be
a more effective strategy than the merge-and-merge one.
Let us consider a specific form of the initial state

|ψ̃〉ACABCBR
= |φ̃〉AC1

ABC
1
BR1
⊗ |GHZ〉C2

AC
2
BR2

, (1)

where systems CA = C1
AC

2
A, CB = C1

BC
2
B, R = R1R2,

|φ̃〉 is an arbitrary state on the system AC1
ABC

1
BR1, and

|GHZ〉C2
AC

2
BR2

=
1√
d

d−1∑
k=0

|kkk〉

is the Greenberger-Horne-Zeilinger state [12] with d ≥ 2.
In order to exchange CA and CB in Eq. (1), it suffices

for Alice and Bob to only consider the state exchange
with QSI of |φ̃〉, since the parts C2

A and C2
B of the state

|GHZ〉 are symmetric. Then by applying the merge-and-
merge strategy on |φ̃〉, we obtain a tighter upper bound
min{u1(φ̃), u2(φ̃)} for the optimal entanglement cost for
the state |ψ̃〉 in Eq. (1) as follows:

min{u1(φ̃), u2(φ̃)} = min{u1(ψ̃), u2(ψ̃)} − log d. (2)
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From the relation between upper bounds in Eq. (2), we
remark that there can be an arbitrarily large gap between
the optimal entanglement cost and the upper bound in
Theorem 1, implying that the upper bound is not optimal
in the general case. This example also shows that there
exist tighter upper bounds for the optimal entanglement
cost. On this account, we argue that the optimal strategy
for state exchange with QSI is generally nontrivial.

Converse bounds.— As in the state exchange without
QSI [3], we can imagine that the referee holds the ref-
erence R, and is ideally allowed to assist Alice and Bob
in the following way, which is here called the R-assisted
state exchange with QSI. The referee first divides their
part R into two parts E and V by using a quantum
channel N from R to V whose complementary channel
N c is from R to E [8]. Next, the referee sends the states
ρV = N (ρR) and ρE = N c(ρR) to Alice and Bob, respec-
tively. Then the initial state |ψ〉 becomes |ψ〉ACAV BCBE

,
where Alice and Bob hold ACAV and BCBE, respec-
tively. Alice and Bob now perform the state exchange
with QSI of the state |ψ〉ACAV BCBE

.

For each n, let ERn be a state exchange with QSI of
|ψ〉⊗n with error εn, and Ebef

n and Eaft
n be total amounts

of entanglement between Alice and Bob before and af-
ter the state exchange with QSI, respectively. Then they
can be expressed as Ebef

n = nH(ACAV )+log ein(ERn ) and
Eaft
n = nH(ACBV ) + log eout(ERn ). Since the total entan-

glement between Alice and Bob cannot increase under
LOCC [13], we have Ebef

n ≥ Eaft
n , that is,

log ein(ERn )− log eout(ERn ) ≥ nH(ACBV )− nH(ACAV ).

Let eRopt be the optimal entanglement cost for the R-
assisted state exchange with QSI, then

max
N

[H(ACBV )−H(ACAV )] ≤ eRopt.

Since any state exchange with QSI can be considered
as an R-assisted state exchange with QSI (in which the
referee trivially does nothing), it holds that eRopt ≤ eopt.
This leads us to the following theorem.

Theorem 2. The optimal entanglement cost eopt for the
state exchange with QSI of |ψ〉 is lower bounded by

l(ψ) = max
N

[H(ACBV )N (ψ) −H(ACAV )N (ψ)] ≤ eopt,

where the maximum is taken over all quantum channels
N : R −→ V .

In general, it is not easy to calculate the converse
bound in Theorem 2, since it involves an optimization
over all quantum channels. However, if the referee sends
the whole part R to either Alice or Bob without dividing
R in Theorem 2, then we obtain the following computable
converse bound:

Corollary 3. For the state exchange with QSI of |ψ〉,
the optimal entanglement cost eopt satisfies

max{l1(ψ), l2(ψ)} ≤ eopt,

where l1(ψ) = H(ACB)ψ − H(ACA)ψ and l2(ψ) =
H(BCA)ψ −H(BCB)ψ.

By using the continuity of the von Neumann en-
tropy [14, 15], we can directly show that l1(ψ) and l2(ψ)
in Corollary 3 are lower bounds to the optimal entangle-
ment cost for the state exchange with QSI of |ψ〉. The
proof of Corollary 3 can be found in Supplemental Ma-
terial [11].

Large gap between converse bounds.— It is obvious that
the lower bound presented in Corollary 3 is less tight than
the one in Theorem 2. Interestingly, the gap between
these two converse bounds can be arbitrarily large. To
this end, let us consider the initial state

|ψ̄〉ACABCBR
= |Φ〉ARA

⊗|Φ〉CARCA
⊗|Φ〉BRB

⊗|Φ〉CBRCB
,

(3)
where the reference system R consists of the four sub-
systems RA, RCA , RB and RCB , and |Φ〉 is a maximally
entangled state on the corresponding bipartite system
SRS with dimS = dimRS for S = A, B, CA and CB.
Then we can readily see that

l1(ψ̄) = H(CB)ψ̄ −H(CA)ψ̄ = −l2(ψ̄).

On the other hand, if a channel N̄ is given by ρR 7→
ρRARCA

, that is, V = RARCA
, then we obtain

l(ψ̄) ≥ H(ACBV )N̄ (ψ̄) −H(ACAV )N̄ (ψ̄)

= H(ACBRARCA)ψ̄ −H(ACARARCA)ψ̄

= H(CA)ψ̄ +H(CB)ψ̄,

which means that the converse bound l(ψ) in Theorem 2
can be arbitrarily larger than max{l1(ψ), l2(ψ)} in Corol-
lary 3 for the class of initial states in Eq. (3).

Optimal entanglement cost can be negative.— We fi-
nally address the crucial question: Can the optimal en-
tanglement cost for state exchange with QSI be negative?
First of all, let us remark that the optimal entanglement
cost for state exchange without QSI of |ψ〉CACBR

cannot
be negative [3]. If the optimal cost was negative, then
Alice and Bob could generate as much entanglement as
they need by repeatedly exchanging their state. This
contradicts the basic requirement that the amount of en-
tanglement cannot increase by LOCC [16].

However, quite remarkably, the optimal entanglement
cost eopt for the state exchange with QSI of |ψ〉 can be
negative. This is readily seen since the upper bounds u1

or u2 in Theorem 1 can be negative. For example, eopt

is negative for the initial state

|ψλ〉ACABCBR
=

√
λ

2
|00000〉+

√
1− λ

2
|10011〉

+

√
λ

2
|01100〉+

√
1− λ

2
|01010〉 (4)
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FIG. 2: Upper bounds u1(ψλ), u2(ψλ) and lower bounds
l1(ψλ), l2(ψλ) to the optimal entanglement cost eopt for the
specific initial state |ψλ〉 of Eq. (4) with 0 ≤ λ ≤ 1.

with λ ≥ 0.65, as seen in Fig. 2. Furthermore, this ex-
ample shows that, in the state exchange with QSI, the
optimal entanglement cost can be generally reduced by
exploiting the QSI AB for the exchanging task. This re-
veals the prominent role of the QSI for such a quantum
communication primitive.

At this point we remark that the negativity of the op-
timal entanglement cost for the state exchange with QSI
does not lead to a contradiction as follows. Let e1st

opt be
the optimal entanglement cost for a state exchange with
QSI of the initial state |ψ〉, and let e2nd

opt be the optimal
entanglement cost for a state exchange with QSI of the
exchanged state |ψ′〉. Then from Corollary 3,

e1st
opt ≥ l1(ψ) and e2nd

opt ≥ l1(ψ′) = −l1(ψ).

So in this case we have the inequality e1st
opt+e

2nd
opt ≥ 0. This

shows that the total amount of entanglement generated
from repeated state exchange protocols with QSI does
not repeatedly increase although the entanglement cost
can be negative in an individual instance of the protocol.

Optimal entanglement costs for some special cases.—
We now provide several conditions which allow us to com-
pute the exact optimal entanglement cost eopt for the
state exchange with QSI of |ψ〉. In fact, the merge-and-
merge strategy is optimal under these conditions.

Corollary 4. Let eopt be the optimal entanglement cost
of the state exchange with QSI of |ψ〉 ≡ |ψ〉ACABCBR

.

(i) The following conditions on |ψ〉 give the exact op-
timal entanglement costs:

I(R;CA|A)ψ = 0 ⇐⇒ eopt = u1(ψ) = l1(ψ),

I(R;CA|B)ψ = 0 ⇐⇒ eopt = u2(ψ) = l1(ψ),

I(R;CB|A)ψ = 0 ⇐⇒ eopt = u1(ψ) = l2(ψ),

I(R;CB|B)ψ = 0 ⇐⇒ eopt = u2(ψ) = l2(ψ),

where I(X;Y |Z)ρ indicates the quantum conditional mu-
tual information (QCMI) of a quantum state ρXY Z , and

u1(ψ), u2(ψ), l1(ψ), and l2(ψ) are given in Theorem 1
and Corollary 3.

(ii) There exists a quantum channel N : R −→ V
such that I(CB : V |A)N (ψ) = I(CA : E|AV )N (ψ) = 0
if and only if eopt = u1(ψ) = l(ψ), where l(ψ) is in
Theorem 2. Similarly, there exists N : R −→ V such
that I(CA : E|B)N (ψ) = I(CB : V |BE)N (ψ) = 0 if and
only if eopt = u2(ψ) = l(ψ).

(iii) Let |ψ̂〉ACABCB
be a pure initial state shared by Al-

ice and Bob (with no referee), then for the state exchange

with QSI of |ψ̂〉ACABCB
one has eopt = H(ACB)ψ̂ −

H(ACA)ψ̂.

By combining the aforementioned upper and lower
bounds, the conditions for the exact optimal cost in
Corollary 4 are directly obtained. We remark that there
are no general implications among the four QCMI condi-
tions in Corollary 4 (i), that is, there exists an initial state
which only satisfies one of these QCMI conditions. We
presents related examples in Supplemental Material [11].

Conclusion.— In this work, we have considered the
state exchange with QSI as a fundamental quantum com-
munication task, and have provided the formal descrip-
tions for the protocol and its optimal entanglement cost.
We have derived upper and lower bounds to the optimal
entanglement cost. From these bounds, we have exactly
evaluated the optimal entanglement cost for several spe-
cial classes of states, including all pure bipartite states.
Furthermore, we have shown that the optimal entangle-
ment cost for the state exchange with QSI can be nega-
tive. This is at striking variance with the state exchange
without QSI, whose entanglement cost is always nonneg-
ative.

By replacing classical communication with quantum
communication, we can consider a fully quantum version
of the state exchange with QSI of |ψ〉ACABCBR

. Similar
to the idea of Theorem 1, this task can be performed
by applying the state redistribution protocol [6, 7] twice.
For example, if the part CA is firstly redistributed from
Alice to Bob in this strategy, then its achievable rates Er

and Qr for ebits and qubit channels are given by

Er =
1

2
[l1(ψ) + l2(ψ)],

Qr =
1

2
u1(ψ) +

1

2
[H(CA|A)ψ +H(CB|BCA)ψ],

where u1(ψ), l1(ψ), and l2(ψ) are in Theorem 1 and
Corollary 3. However, in this case the achievable region
of a resource pair (Er, Qr) is completely unknown.

To the best of our knowledge, a protocol exchanging
Alice’s and Bob’s information in a single step has not
been known, and so in this work we have considered the
merge-and-merge strategy, in order to obtain achievable
entanglement rates. Hence it would be very meaningful
to devise such a direct exchanging protocol. Moreover,
recent results for one-shot quantum state merging [17]
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and implementing bipartite unitaries [18] may be useful
to figure out novel strategies which can provide tighter
achievable bounds than those in Theorem 1.

As potential applications of the state exchange, our
task can be considered as a simple and fundamental sit-
uation in distributed quantum computation [18–21], in
which multiple quantum devices connected by quantum
communication are exploited. Moreover, it turns out that
swap gates play a crucial role in universal quantum com-
putation [22]. Since the state exchange is conceptually
nothing but a swap operation between two remote users,
our results would be useful to realize the swap gates in
distributed quantum computation with reduced entan-
glement costs.

Finally, we expect that studying variations on the state
exchange with QSI makes quantum information theory
richer. For example, one can assume that Alice and Bob
can consume noisy resources [23, 24] instead of noiseless
resources, or that Alice or Bob is additionally allowed to
make use of a local resource, such as maximally coherent
states [25–27], as in the incoherent state merging [27] and
the incoherent state redistribution [28]. Exploring these
avenues deserves further investigation.
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