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We theoretically study the current-voltage relation, I − V characteristic, of the photovoltaics
due to the shift current, i.e., the photocurrent generated without the external dc electric field in
noncentrosymmetric crystals through the Berry connection of the Bloch wavefunctions. We find
that the I − V characteristic and shot noise are controlled by the difference of group velocities
between conduction and valence bands, i.e., v11 − v22, and the relaxation time τ . Since the shift
current itself is independent of these quantities, there are wide possibilities to design it to maximize
the energy conversion rate and also to suppress the noise. We propose that the Landau levels in
noncentrosymmetric two-dimensional systems are the promising candidate for energy conversion.

Introduction — There are variety of nonlinear optical
processes which are intensively studied especially since
the strong laser light became available [1, 2]. Of particu-
lar interest is the generation of dc photocurrent induced
by the light excitations aiming at the application to the
solar cells. In the conventional setup, the light is injected
to the p-n junction and the photo-generated electrons
and holes are separated by the built-in potential gradi-
ent. In this situation, the diffusive motion of electrons
and holes into the electrode is required to obtain the dc
current. On the other hand, the focus of recent inten-
sive attention is the shift current in noncentrosymmetric
crystals, which does not require the interface such as p-n
junction [3–8]. In this case, the broken spatial inversion
symmetry I of the crystal structure determines the direc-
tion of the photocurrent without the external dc electric
field. The shift current is regarded as one of the possible
microscopic mechanisms of the highly efficient solar cell
action in perovskite oxides [9–12]. From the theoretical
point of view, shift current originates from the quantum
geometric nature of the Bloch wavefunctions in noncen-
trosymmetric solids [8, 13]. Due to the conjugate relation
between the position x and the momentum p = ~k, x is
represented by i~∂/∂p. (~ is the Planck constant divided
by 2π.) From this relation applied to the Bloch wavefunc-
tions of solids, there appears the intracell coordinate xn
for the wavepacket made from each Bloch wavefunction
〈x|ψn(k)〉 = eikx〈x|nk〉 as

xn = an(k) = −i〈nk|∇k|nk〉 (1)

which is called Berry connection [14]. The optical transi-
tions between the valence and conduction bands induces
the intracell coordinates to shift, which results in the dc
current. This is the mechanism of the shift current in
noncentrosymmetric crystals. (Note that an(k) is 0 for
the centrosymmetric crystal with time-reversal symme-
try.) The expression for the shift current contains only
the inter-band matrix elements of the current, which is
related to the Berry connection defined above, in sharp
contrast to the usual photocurrent by the classical motion

of carriers described by the intra-band matrix elements
of the current, i.e, the group velocity. Therefore, it is
expected that the physical nature of the shift current is
distinct from that of the conventional current.

In Ref. [8], a theoretical framework has been devel-
oped to treat the shift current of the two-band model
analytically, by combining the Keldysh method and Flo-
quet formalism. The relaxation of electrons Γ = ~/τ is
introduced, and the competition between the stimulated
transitions, i.e., recombining electrons and holes, and the
non-radiative relaxation is found to be described by the
factor ΓE2/

√
(eEr)2 + Γ2 (r is a constant having a di-

mension of length). Namely, the non-radiative relaxation
Γ, which has no directional dependence, is needed for
the finite shift current, while the stimulated transition
induces the back flow of the current. This dependence
on the strength of the electric field E has been recently
observed in SISb by THz spectroscopy [15].

In realistic setup of solar cell action, the voltage at
open circuit conditions is often measured, which deter-
mines the power conversion rate. Therefore, the I − V
characteristics of the shift current is an important issue
[Fig. 1(a, b)]. Another possible application is the pho-
todetector [Fig. 1(c)]. For that purpose, the noise of the
shift current needs to be analyzed. In the present paper,
we theoretically study these two issues. The former is
achieved by developing a new theoretical technique that
combines gauge invariant formulation of Keldysh Green’s
function with Floquet theory description of shift cur-
rent [8]. The latter is done by computing correlation
functions with nonequilibrium Green’s functions on top
of Floquet theory approach.
I − V characteristics of shift current photovoltaics —

In the experimental setup to measure shift current, an
electrical circuit is formed by attaching two electrodes to
the crystal and including resistors as shown in Fig. 1(a).
The relationship between the voltage between the two
electrodes and the current flowing through the crystal is
the fundamental information that is necessary to design
the solar cells [Fig. 1(b)]. Especially, the open circuit
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FIG. 1. Schematic picture of I − V characteristics and pho-
todetection in shift current photovoltaics. (a) Setup to mea-
sure I − V and photocurrent. (b) I − V characteristics of
shift current photovoltaics. In this work, we consider current
density J as a function of the electric field E. (c) Shot noise
in shift current photovoltaics. When the light is off, current
fluctuates around zero due to thermal noise which can be ne-
glected in zero temperature. When light is on, shift current
flows and additional current fluctuation appears due to pho-
tocarriers in the nonequilibrium steady state.

voltage is an important quantity for the energy conver-
sion rate. The shift current involves the inter-band tran-
sitions which inevitably create the electrons and holes.
Therefore, the additional current due to these photo-
generated carriers and their interference with the shift
current should be analyzed, which we undertake in this
section.

We study a system in an external electric field by using
gauge invariant formulation of Keldysh Green’s function
and its gradient expansion. In the presence of an exter-
nal dc electric field Edc, the Green’s function is expanded
with respect to Edc as G(Edc) = G0 + (~eEdc/2)GE +
O(E2

dc) [16–18]. In addition, we employ Floquet two
band model to incorporate ac electric field Elight of con-
stant light that is irradiated to the sample and produces
shift current [8]. We focus on the valence band with one
photon and the conduction band with zero photon. The
Floquet Hamiltonian is given by

HF =

(
ε1 + ~ω eAv12
eAv21 ε2

)
, (2)

when the static Bloch Hamiltonian H (without the light
field) is diagonalized as H(k)|ui(k)〉 = εi(k)|ui(k)〉 with
the energy dispersion εi(k) and the Bloch wave func-
tion |ui(k)〉 for the ith band. Here, the velocity ma-
trix element is defined as vij = (1/~)〈ui|∂kH|uj〉, and

A = Elight/ω with the strength Elight and the frequency
ω of the light electric field. The indices 1 and 2 refer to
valence and conduction bands, respectively. (For details,
see Supplementary Material (SM) [19].)

With this setup, the I−V characteristic of shift current
materials is given by

J(Edc) = Jshift + σEEdc, (3)

with

Jshift =
2πe3

~2ω2
|E(ω)|2

∫
[dk]Im

[(
∂v

∂k

)
12

v21

]
δ(ω21 − ω),

(4)

σE =
4πe4

~3ω2
|E(ω)|2τ2

∫
[dk]|v12|2(v11 − v22)R′δ(ω21 − ω),

(5)

where [dk] ≡ dk/(2π)d with the dimension d, R =
Im[(∂kv)12/v12], R′ = Re[(∂kv)12/v12], and ω21 = (ε2 −
ε1)/~. We note that R = ∂kIm[log v12] + a1− a2 is called
shift vector related to the shift of intracell coordinates
between the two bands. (For derivation, see SM.)

The physical meaning of the above expressions can be
understood as follows. In our setup, the sample is sub-
jected to constant light field, which produces the constant
shift of the electrons associated with the inter-band tran-
sitions leading to the shift current Jshift. With the dc
electric field, the accelerated motion of the photoexcited
electrons and holes generates additional current σEEdc

which is proportional to the difference of the group ve-
locities between the conduction and valence bands, i.e.,
v11−v22. The former, i.e., shift current Jshift, is basically
independent of the lifetime τ of the electrons, while the
latter is proportional to τ2. This is because the photocar-
rier density is proportional to the recombination time τ
and their mobility is also proportional to the scattering
time τ . (Note that both recombination and scattering
times are described by the same τ in our formalism.)
Therefore, it is expected that the shift current Jshift (at
zero bias) is almost independent of the disorder and tem-
perature of the sample, while the slope in I−V character-
istics that corresponds to the additional current driven
by Edc is strongly disorder and temperature dependent
through the τ2 factor.
Current noise in shift current photovoltaics — The

transport current is inevitably associated with the noise.
There are two types of the current noise [20, 21]. One is
the equilibrium noise, i.e., Nyquist noise, which is inde-
pendent of the details of the system and is given only
by the impedance Z(ω) of the current circuit at fre-
quency ω. The spectrum of the current fluctuation is
given by (J2)ω = [ω<[1/Z(ω)] coth(ω/2T ). The other is
the nonequilibrium noise induced by the current flow. At
low temperature, the quantum mechanical shot noise is
the dominant contribution, which originates from the dis-
crete nature of the electron and its charge −e. The shot
noise is characterized by the Fano factor F = (J2)ω=0/I
with I being the current. For the ideal situation, F = 2e
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and the shot noise is used as a tool to determine the
charge of the carriers.

As mentioned in the introduction, the shift current is
distinct from the conventional current in that shift cur-
rent is intimately related to the wave nature of the elec-
trons that is characterized by the off-diagonal matrix el-
ements of the current operator. Therefore, it is expected
that the noise of the shift current is distinct from that of
the conventional one.

Motivated by this consideration, we study current
noise in shift current photovoltaics. We compute au-
tocorrelation of local current operator vloc defined at
one point (e.g. x = 0) in the bulk, which is given by

v = 1
2L

∑
k,k′(vk + vk′)c†kck′ , where L is the sample size,

and k and k′ satisfy |k − k′| < 1/l with the size of the
electrode l [22]. The current noise is given by the zero
frequency component of the autocorrelation as

S =

∫
dt(〈vloc(t)vloc(0)〉 − 〈vloc〉2). (6)

To describe the nonequilibrium steady state under light
irradiation that supports shift current, we again use Flo-
quet two band model HF . By using Green’s functions in
Floquet two band model derived in SM, the noise S can
be expressed as

S =
e4

~2ω2
E2τ

∫
[dk]|v11 − v22||v12|2δ(ω21 − ω). (7)

(For derivation, see SM.) This expression shows that the
noise is proportional to the relaxation time τ and may
be interpreted as temperature noise in the steady state
with the effective temperature proportional to the tran-
sition rate ≈ |v12|2. Interestingly, the noise S does not
have a part that corresponds to usual current noise in the
equilibrium systems which is proportional to the current
(S ∝ J). This means that the noise S is substantially
suppressed if the relaxation time τ is very short or two
bands are parallel with each other (v11 − v22 ≈ 0), In
such cases, shift current photovoltaics can show much less
noise than conventional metals subject to current noise.

Shift current in Landau levels — In the previous sec-
tions, we have shown that both the I − V character-
istics and the noise are governed by the difference of
group velocities of conduction and valence bands, i.e.,
v11− v22, and the relaxation time τ . In particular, when
v11 − v22 = 0, the current is independent of the voltage
and also the noise is 0. This is an ideal situation both
for the solar cells and photodetectors. However, it is
usually difficult to realize the situation of “parallel” dis-
persion between the conduction and valence bands. Here
we propose the dispersonless Landau levels in 2D offers a
promising laboratory to test the ideal developed above.
The dc current in the flat band system can be also a
smoking gun experiment for the unconventional nature
of the shift current distinct from the usual photocurrent
by the diffusive motion of photocarriers. More explicitly,
we consider the two systems, i.e., the Landau levels of

FIG. 2. Optical transitions in LLs in inversion broken 2D sys-
tems realized in (a) graphene with staggered potential, and
(b) TI surface states. (c) Shift current in TI surface states.
We plot the nonlinear conductivity σyyy as a function of fre-
quency. The inset is for linear conductivity σyy(ω). Relax-
ation time is set to 1/τ = 0.05ωc.

graphene and Landau levels of the surface state of three
dimensional topological insulator.

We first study shift current in graphene Landau levels
(LLs). Since LLs have flat band dispersion, we expect
that the current noise is suppressed and the power of
shift current is enhanced in LLs. In order to take into
account the effect of inversion breaking in graphene, we
consider Dirac Hamiltonian with a trigonal warping term
[23–25],

H = vF

(
0 π†

π 0

)
+ ηκ

(
0 π2

(π†)2 0

)
, (8)

with Fermi velocity vF , strength of trigonal warping κ,
π = kx ± iky, and η = ±1 for K and K’ valleys, re-
spectively. In the presence of magnetic field, the mo-
mentum operators are written as π = (

√
2~/`)a† at

K and π = (
√

2~/`)a and K’ with annihilation and
creation operators a and a†, and the magnetic length
` =

√
~/eB. Now let us consider shift current supported

by the graphene LLs. We suppose that the Fermi level
is located between n = 0 and n = 1 LLs, and the sam-
ple is irradiated with linearly polarized light along the x
direction with the photon energy close to ~ωc. In this
case, the photoexcitation takes place from n = 0 LL to
n = 1 LL. The shift current response Jy = σyxx|Ex(ω)|2
is given by

σyxx(ω) = η
e3

~ω2`2
vFκδ(ω − ω10), (9)

where ω10 = (1/~)(ε1 − ε0) with ε0 (ε1) being the energy
of n = 0 (n = 1) LL. This means that the shift current
response vanishes when the optical transition 0→ 1 takes
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place both at K and K’ valleys. This is natural since the
original Hamiltonian has inversion symmetry I = σxτx,
where σ and τ are Pauli matrices acting on sublattice and
valley degrees of freedom; nonzero shift current requires
breaking of inversion symmetry. One way to achieve this
is introducing staggered potential mσzτ0. For example,
this situation is realized in graphenes on the substrate of
BN, and also in transition metal dichalcogenide (TMDC)
such as MoS2. Staggered potential only shift the energy
of n = 0 LL to −ηm without changing energies of other
LLs. Also, it does not change the wave functions of LLs.
For example, when the Fermi energy lies between n =
0 LLs and n = 1 LLs (both at K and K’ points) as
illustrated in Fig. 2(a), nonzero shift current flows by
tuning the photon frequency to either ~ωc−m (resonant
at K valley) or ~ωc +m (resonant at K’) valley.

Next, we move on to shift current in LLs on the sur-
face of topological insulators(TIs). The Hamiltonian is
written as [26]

H = vF (pxσy − pyσx) +
λ

2
(p3+ + p3−)σz, (10)

where vF is the Fermi velocity, λ is the strength of trigo-
nal warping effect, and p± = px ± ipy. The Hamiltonian
has C3 rotation symmetry and reflection symmetry along
the x direction [(kx, ky) → (−kx, ky)] with Rx = iσx.
With C3v symmetry, nonzero components of second order
nonlinear conductivity are σyyy = −σyxx. The Hamilto-
nian in the magnetic field is again obtained by replacing
the momentum operators with creation/annihilation op-
erators (for details, see SM). The nonlinear conductivity
σyyy in the lowest order in the trigonal warping is given
by

σyyy(ω) = − 3e3√
2ω2`3

vFλδ(ω − ω10), (11)

when the Fermi energy is located between n = 0 and
n = 1 LLs, and the photon frequency is close to the
cyclotron energy (ω ∼ ωc). [27] A general expression for
σyyy can be found in SM, and it shows that the two inter-
band transitions −n→ n+ 1 and −n−1→ n (that have
the same resonance frequency) make opposite contribu-
tions to shift current (see Fig. 2(b)). In Fig. 2(c), optical
absorption shows consecutive peaks from interband con-
tributions while shift current shows only one peak at the
resonance 0→ 1.

We can estimate photocurrent supported by the LLs
as follows. For B = 1 T, the cyclotron energy is given
by ~ω = 38meV (graphene [23–25]), 22meV (MoS2 [28])
and ~ω = 14meV (TI [26]) using material parameters
from the references, which falls into terahertz regime.
For typical relaxation time of τ = 1 ps, the 2D nonlinear
conductivity are estimated as σ = 7.3 × 10−12 A m/V

2

(graphene), 5.5 × 10−12 A m/V
2

(MoS2), and 1.7 ×
10−11 A m/V

2
(TI). These values exceed σ for typical 2D

shift current material monolayer GeS σ ∼ 10−14 A m/V
2

[29]. We can estimate photocurrent J generated by light

FIG. 3. (a) I − V characteristic of flat band systems. (b)
Photoexcitation in zero electric field. (c) Photoexcitation in
E = −Emax. Real space shift R causes energy shift of eER.

intensity I from the formula J = κI with κ = 2σ/cε0
[7]. This allows us to convert σ = 1.0 × 10−11 A m/V

2

to κ = 7.6× 10−5 (A/m)/(W/cm
2
). For example, when

TI of sample size 1 mm is irradiated with I = 1 W/cm
2

under B = 1 T, the shift current from LLs reaches 100
nA, which is much larger than photocurrent of 10 - 100
pA that has been observed for a TI thin film [30]

Finally, we discuss the efficiency of shift current of the
LLs. While σE becomes zero due to the flat band nature
of the LLs, there exists a maximum electric field Emax

that we can apply to LL photovoltaics as illustrated in
Fig. 3. In the electric field Edc, the real space shift of an
electron quantified by shift vector R causes energy shift of
eEdcR. In order that the photoexcitation still takes place
in the presence of Edc, this energy shift eEdcR should
not exceed the band width W of valence and conduction
bands (see Fig. 3(c)). Therefore, the maximum electric
field is determined by Emax = W/eR. In the case of LLs,
the band width is given by W ' ~/τ with relaxation time
τ . (Here we assume that the sample is irradiated with
monochromatic light of cyclotron frequency and the LLs
have uniform level broadening of W , where optical tran-
sition equally takes place as far as |Edc| < Emax.) Now
we estimate monochromatic power conversion efficiency
r = Pout/Pin for monochromatic light with the cyclotron
frequency. Here, Pout is the power generated by shift cur-
rent photovoltaics that is given by Pout = JshiftEmax, and
Pin is the power absorbed by the sample that is given by
Pin = σ(1)(ω)|E(ω)|2 where σ(1)(ω) is the linear conduc-
tivity quantifying the absorption rate of the monochro-
matic light. By using a rough approximation for Eq. (4)
as Jshift ' (e/~ω)|E(ω)|2σ(1)R, we obtain the conversion
efficiency for flat band systems as

r ' W

~ω
' 1

ωτ
. (12)

For B = 1T, the efficiency r becomes as high as r = 11%
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(graphene), 18% (MoS2), and 29% (TI) with a typical
level broadening W = 4meV from impurity scattering.
Discussions — We have studied I − V characteristics

and shot noise in shift current photovoltaics. The derived
formulae for them indicate that the slope in the I − V
characteristic and the shot noise are strongly disorder
and temperature dependent through their τ dependence,
while zero bias shift current is independent of disorder
and temperature. The formulae also show that it is pos-
sible to suppress both the slope in I − V characteristics
and the nonequilibrium noise simultaneously by reducing
the band widths.

Flat band systems are the ideal laboratory to real-
ize this situation. We have proposed that the LLs of
graphene and surface states of 3D TIs are promising can-
didates for this purpose. We predict that the shift current
of LLs is observable with essentially no current fluctua-
tion and with high monochromatic power conversion ef-

ficiency. This will offer the sharpest experimental test of
the geometrical nature of the shift current. For applica-
tion as photodetectors for weak intensity light, we also
need to consider noise that comes from quantum statis-
tics of photons, which is left for future studies.
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