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We propose a platform for universal quantum computation that uses conventional s-wave super-
conducting leads to address a topological qubit stored in spatially separated Majorana bound states
in a multi-terminal topological superconductor island. Both the manipulation and read-out of this
“Majorana superconducting qubit” are realized by tunnel couplings between Majorana bound states
and the superconducting leads. The ability of turning on and off tunnel couplings on-demand by
local gates enables individual qubit addressability while avoiding cross-talk errors. By combining
the scalability of superconducting qubit and the robustness of topological qubits, the Majorana
superconducting qubit may provide a promising and realistic route towards quantum computation.

PACS numbers: 03.67.Lx; 74.50.+r; 85.25.Cp; 71.10.Pm

Superconducting circuits are among the leading plat-
forms for quantum computing. Their main building
block is the superconducting qubit which is based on
the Josephson tunnel junction, a non-dissipative and
non-linear electrical element that enables long-coherence
times [1–3] and high-fidelity gate operations [4, 5]. With
recent advances in scaling to qubit arrays and surface
code architectures [6–11], significant efforts are being
made to minimize errors due to unintentional cross-talk
between qubits [11–14] and to avoid leakage into non-
computational states [15, 16].

In this work, we introduce a new platform for univer-
sal quantum computing that combines the scalability of
the superconducting qubit and the robustness of Majo-
rana qubit. The key element in our proposal is a multi-
terminal topological superconductor (TSC) island with
spatially separated Majorana bound states (MBSs), used
as a weak link between superconducting electrodes. The
minimal setup is a Josephson junction that consists of
two TSC weak links in parallel within a superconducting
loop, as shown in Fig. 1(a). Both TSC islands operate
in the Coulomb blockade regime and mediate the Josep-
son coupling via virtual charge fluctuations. The first
island hosts four MBSs (γ1, γ2, γ3, γ4) at the four termi-
nals, which stores a single topological qubit. The second
is a two-terminal island with two MBSs (γ1,ref, γ2,ref) used
for qubit manipulation and readout only. The full set of
single-qubit rotations is achieved by selectively turning
on and off the tunnel couplings between individual MBSs
and the SC electrodes that enable different Cooper pair
splitting processes, see Fig. 1(b) and (c). The qubit read-
out is achieved by measuring the persistent supercurrent
in the loop, see Fig. 1(a). We term this basic building
block—Majorana-based qubit in an all-superconducting
circuit—“Majorana superconducting qubit” (MSQ).

Compared to the conventional superconducting qubit,
the MSQ is expected to have several advantages. First,
the nonlocal storage of quantum information in well-
separated MBSs makes the MSQ protected from deco-
herence under local perturbations at a physical level
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FIG. 1. (Color online) (a) Minimal setup for a MSQ experi-
ment. A four-terminal TSC island realizing a single MSQ and
a two-terminal reference island (both gray) are placed in an
s-wave SC Josephson junction (red). The horizontal extent
of the islands are assumed to be larger than the localization
length ξMBS of the MBSs γ` and γ`,ref (yellow) which emerge
at the terminal points of the islands. The vertical extent of the
unit cell is assumed to be at most of the order of the supercon-
ducting coherence length ξSC thereby enabling Cooper pair
splitting between the superconducting leads mediated by the
MBSs. With the suitable choice of tunnel couplings discussed
in the text, the states of the MSQ, |0〉 and |1〉, can be read-
out be measuring the direction of the persistent Josephson
current in a loop. (b) Typical Cooper pair splitting process
between one of the four-terminal islands and the two-terminal
reference islands utilized for implementing rotations around
the z-axis of the MSQ Bloch sphere. (c) Same as (a) but for
rotations around the x-axis of the MSQ Bloch sphere

[17]. The MSQ is also insensitive to global electro-
static fluctuations that couple to the total charge on
the TSC island [18–20]. Second, since a MSQ is formed
by two topologically degenerate states that are separated
from the excited states by the TSC gap, leakage to
non-computational states, which is a common problem
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encountered in gate operations on weakly-anharmonic
transmon qubits, is strongly suppressed. Third, both
gate operations and qubit read-out are realized solely by
tuning tunnel couplings between the TSC island and the
superconducting leads, which can be turned on and off
on-demand through local gates as recently demonstrated
in semiconductor based superconducting qubits [21–23].
Importantly, a specific set of tunnel couplings are to be
turned on only during the gate operation and measure-
ment. The ability of pinching off unwanted tunnel cou-
plings allows us to address MSQ individually without
cross-talk errors. This provides an advantage over flux-
controlled tuning of Josephson energy in transmon and
hybrid transmon-Majorana qubits [24].

The use of superconducting interference effect for qubit
manipulation and read-out in our proposal constitutes
a key advantage over other Majorana-based quantum
computation platforms [18–20], where MBSs are ad-
dressed by Aharonov-Bohm interference of single elec-
trons [25]. The latter requires electron phase coherence
in a non-superconducting lead. The limited phase co-
herence length in InAs nanowires [26, 27] places an im-
portant constraint on device geometries. In contrast, in
our setup, there is no upper bound on the size of the
superconducting loop, as the persistent supercurrent is
dissipationless. Importantly, the separation between the
two parallel TSC islands is required to be shorter than
the superconducting coherence length, in order to enable
Cooper pair splitting processes. For conventional super-
conductors such as aluminium, the coherence length can
be several hundreds of nanometers [28]. Finally, another
principal advantage of MSQs is that the energy gap of the
SC leads provides additional protection against quasipar-
ticle poisoning independent of the island charging ener-
gies. This feature should significantly reduce the need
for fine-tuning of the island gate charges to warrant pro-
tection from quasiparticle poisoning.

Setup. The setup for a minimal MSQ experiment en-
abling both single-qubit rotations and read-out is de-
picted in Fig. 1(a). It comprises a single four-terminal
islands as well as a two-terminal reference island. The
MBSs which form at the terminal points ` are denoted
by γ` for the four-terminal island and by γ`,ref for the
two-terminal reference island. We assume that the hori-
zontal extent of the islands is much larger than the MBS
localization length ξMBS such that the wavefunction hy-
bridization of MBSs localized at opposite terminals is
negligible and, therefore, all MBSs reside at zero energy.
Since the TSC islands are of mesoscopic size, each island
acquires a finite charging energy

U = (ne−Q)2/2C, (1a)

Uref = (nrefe−Qref)
2/2Cref. (1b)

Here, n and nref denote the number of unit charges on the
islands. Furthermore, Q and Qref are gate charges which

are continuously tunable via gate voltages across capaci-
tors with capacitances C and Cref, respectively. For sim-
plicity, we will focus on the case of equal capacitances,
C = Cref. Assuming the strong Coulomb blockade regime
and a tuning of the gate charges Q, Qref close to integer
values, the total fermion parities of the islands obey the
constraints [25, 29],

γ1γ2γ3γ4 = (−1)n0+1, (2a)

iγ1,refγ2,ref = (−1)n0,ref . (2b)

In writing down these expressions, we have omitted finite-
energy quasiparticle contributions, which is a justified
provided that the island energy gaps define the largest en-
ergy scale of the setup. A consequence of the constraints
given in both Eq. (2a) and Eq. (2b) is that the dimen-
sionality of the ground state subspace at zero charging
energy decreases by a factor of two for all islands. In
particular, for the four-terminal island, the four-fold de-
generate ground state subspace at zero charging energy
reduces to a two-fold degenerate ground state subspace
which makes up the MSQ. The Pauli matrices acting on
the each of the two MSQs are given by

x̂ = iγ2γ3, ŷ = iγ1γ3, ẑ = iγ2γ1. (3)

As shown in Fig. 1(a), the TSC islands are placed in
a Josephson junction of two bulk, s-wave SC leads m =
L,R and are used to address the MSQs through tunable
tunnel couplings. The BCS (Bardeen-Cooper-Schrieffer)
Hamiltonian of the SC leads is given by,

H0 =
∑

m=L,R

∑
k

Ψ†m,k
(
ξkηz + ∆mηxe

iϕmηz
)

Ψm,k, (4)

where Ψm,k = (cm,k↑, c
†
m,−k↓)

T denotes a Nambu spinor
with cm,ks being the annihilation operator of an elec-
tron with momentum k and Kramers index s =↑, ↓. The
magnitude and phase of the superconducting ordering
parameter are given by ∆m and ϕm, respectively. The
Pauli matrices ηx,y,z are acting in Nambu space. For
simplicity, we will assume that the magnitudes of the SC
order parameters are identical for both leads, ∆ ≡ ∆m.

The tunneling Hamiltonians which couple the SC leads
to the MBSs at the terminal points are given by

HT =
∑
m,`

∑
k,s

λsm` c
†
m,ksγ`e

−iφ/2 + H.c., (5a)

HT,ref =
∑
m,`

∑
k,s

λsm`,ref c
†
m,ksγ`,refe

−iφref/2 + H.c., (5b)

for the four-terminal and the two-terminal reference is-
lands, respectively. For simplicity, the tunnel couplings
are taken to be point-like. This is justified provided that
the separation between individual tunneling contacts is
much smaller than the superconducting coherence length
ξSC. In the subsequent discussions, we will assume that
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the lead electrons will only couple to nearby MBSs, i.e.,
λsL2 = λsL4 = λsR1 = λsR3 = 0 and λsL2,ref = λsR1,ref = 0.
This is justified if the MBS localization length ξMBS is
much larger than horizontal segments of the islands. The
remaining non-zero tunnel couplings are assumed to take
on the most general complex and spin-dependent form.
Couplings of the lead fermions to finite energy quasipar-
ticles are neglected which is justified if the energy gap
of the TSC islands is sufficiently large. Moreover, the
operator e±iφ/2 and e±iφref/2 increase/decrease the total
charge of the four-terminal island or the two-terminal ref-
erence island by one charge unit, [n, e±iφ/2] = ±e±iφ/2
and [nref, e

±iφref/2] = ±e±iφref/2, while the MBSs oper-
ators γ` and γ`,ref change the electron number parity
of respective islands [25]. In summary, the Hamilto-
nian for a minimal MSQ experiment is given by H =
H0 + U + Uref +HT +HT,ref.

Single-qubit control. In this section, we describe the
simplest MSQ experiments which allows for both read-
out and manipulation of a single MSQ. In combination
with the two-qubit entangling operation introduced in
the next section, this will enable universal quantum com-
putation [30].

First, we discuss rotations around the z-axis of the
MSQ Bloch sphere as well as the read-out of the ẑ-
eigenvalue. We, therefore, consider the case when only
the couplings to the two-terminal reference island and
the two couplings λsL1 and λsR2 at opposite boundaries of
the four-terminal island are non-vanishing, see Fig. 1(b).

In this case, second-order processes in which a Cooper
pair tunnels between one of the SC lead and one of the
TSC islands are prohibited as a result of conflicting pair-
ing symmetries assuming that couplings to finite-energy
quasiparticles are negligible [31–34]. Moreover, Cooper
pair transport occuring separately between each SC lead
and both TSC islands is also forbidden, since these pro-
cesses change the charge of the TSC islands, and in this
way leak out of the low-energy Hilbert space. Conse-
quently, the Josephson coupling between the SC leads is
mediated exclusively by fourth-order co-tunnelling pro-
cesses via both the two-terminal and the four-terminal
island. An example of such a fourth-order process in-
volves extracting two electrons which form a Cooper pair
from one of the SC leads and placing them onto the two
spatially separated islands in the first two intermediate
steps. Such a coherent splitting of Cooper pairs requires
the vertical distance of the islands to be smaller than the
superconducting coherence length ξSC and leads to vir-
tually excited states of order U ≡ e2/2C on both islands.
In the final two intermediate steps, the Cooper pair is
recombined on the other lead, and the system thereby
returns to its ground state.

The amplitudes of all Cooper pair splitting processes
can be computed perturbatively in the weak-tunnelling
limit, πνm|λsm`,refλ

s′

m`| � ∆, U with νm the normal-state
density of states per spin of the lead m at the Fermi en-

ergy. The results are summarized by an effective Hamil-
tonian acting on the BCS ground states of the leads and
the charge ground states of the islands [35],

Hz,eff = (−1)n0,ref+1(J12 + J̃12) cos(ϕ+ ϕ12)ẑ, (6)

where we have omitted contributions that are indepen-
dent of the SC phase difference as they do not contribute
to the Josephson current. Moreover, we have introduced
the couplings constants and the anomalous phase shift,

J``′ =
32|ΓL`ΓR`′ |

π2∆

∫ ∞
1

dx dy

f(x)f(y) [f(x) + f(y)] g(x)g(y)
,

J̃``′ =
64|ΓL`ΓR`′ |

π2∆

∫ ∞
1

dx dy

f(x)f(y) [g(x) + g(y)] g(x)g(y)
,

ϕ``′ = arg[Γ∗L`ΓR`′ ], (7)

with the functions f(x) ≡
√

1 + x2, g(x) ≡
√

1 + x2 +
U/∆ as well as the hybridization

Γm` ≡ πνm(λ↓m`,refλ
↑
m` − λ

↑
m`,refλ

↓
m`). (8)

The effective Hamiltonian given in Eq. (6) is the first
main finding of our work. Three aspects are noteworthy:

(1) The unitary time-evolution operator of the effec-
tive Hamiltonian implements rotations around the z-axis
of the MSQ Bloch sphere. More explicitly, by puls-
ing the couplings and phases of the effective Hamilto-
nian for a time tz such that (−1)n0,ref+1

∫ tz [J12(t) +

J̃12(t)] cos[ϕ(t) + ϕ12(t)] = ~θz/2 a rotation by an ar-
bitrary angle θz around the z-axis of the MSQ Bloch
sphere is achieved.

(2) A choice of basis for the MSQ is given by the eigen-
states of the ẑ-Pauli operator. Thus, a read-out of the
MSQ in this basis amounts to measuring the eigenval-
ues z = ±1 of the ẑ-Pauli operator. This can be ac-
complished by measuring the sign of the resulting zero-
temperature Josephson current,

I =
2e

~
(−1)n0,ref(J12 + J̃12) sin(ϕ+ ϕ12)z. (9)

For n0,ref being odd (even), a negative (positive) critical
current implies that z = +1 while a positive (negative)
critical currents implies that z = −1, see Fig. 1(a).

(3) A necessary requirement for a non-zero effective
Hamiltonian is that Γ1L 6= 0 and Γ2R 6= 0. These con-
ditions are fulfilled granted that the MBSs in the two
islands couple asymmetrically to the two spin-species of
the SC leads, see Eq. (8). In fact, the strength of the
Josephson coupling is maximized if the MBSs in different
islands couple to opposite spin species in the SC leads.
For parallel topological nanowires [19, 20, 36–41], there
are multiple ways on how the desired asymmetry can be
realized: One option is to have a common spin polariza-
tion in the two nanowires and a finite spin-orbit coupling
in the tunnelling barriers which rotates the spin [42]. By
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FIG. 2. (Color online) (a) Typical Cooper pair splitting pro-
cess between two four-terminal islands implementing a two-
qubit entangling XXχ ≡ exp(−iχx̂ax̂b) gate for some param-
eter χ. (b) Linear array of unit cells. To maximize critical
current and, thereby, optimize qubit measurement times, the
vertical extent of each unit cell is of the order of the SC coher-
ence length ξSC. Neighbouring unit cells are also separated by
a distance . ξSC to allow for coherent exchange of quantum
information via SWAP gates.

adjusting the tunneling barrier lengths, we can transport
a Cooper pair across the junction by pure spin-flip tun-
nelling in the barriers to the reference island and pure
normal tunnelling in the barriers to the four-terminal is-
land. An alternative option is to generate different (ide-
ally opposite) spin polarization in the two nanowires by
using local magnetic fields. Such fields could be obtained
by coating the wires with ferromagnets that produce dif-
ferent exchange fields.

So far, we have focused on rotations around the z-axis
of the MSQ Bloch sphere. We will now show that rota-
tions around the x-axis can be realized similarly. To this
end, we choose λs3L, λs2R , λs1,ref and λs2,ref as the only
non-zero tunnel couplings, see Fig. 1(c). The Josephson
coupling between the superconducting leads is again fa-
cilitated solely by Cooper pair splitting processes via the
TSC islands. In the weak tunnelling limit, the ampli-
tudes of these processes are summarized by an effective
Hamiltonian acting on the BCS ground states of the leads
and the charge ground states of the islands [35],

Hx,eff = (−1)n0,ref+1(J32 + J̃32) cos(ϕ+ ϕ32)x̂, (10)

It is not hard to see that pulsing the couplings and phases
of this effective Hamiltonian for a time tx such that
(−1)n0,ref+1

∫ tz [J32(t)+ J̃32(t)] cos[ϕ(t)+ϕ32(t)] = ~θx/2
enables rotations by an angle θx around the x-axis of the
MSQ Bloch sphere. Combining this observation with the
results of Eq. (6) allows us to perform rotations around
two independent axes on the Bloch sphere and, there-
fore, enables the implementation of arbitrary single-qubit
gates acting on the MSQ.

Two-qubit gates. What remains to be shown to achieve
universality in our setup is the implementation of a two-
qubit entangling gate. This will be the topic of the
present section. As a starting point, we consider two
four-terminal islands labelled by j = a, b and choose

λs3L,a, λs2R,a, λs3L,b, λ
s
2R,b as the only non-zero tunnel cou-

plings, see Fig. 2(a). The Cooper pair splitting processes
which lead to a Josephson coupling between the super-
conducting leads are now entirely facilitated by the two
four-terminal TSC islands. Their amplitudes can be com-
puted in the weak-tunnelling limit, πνm|λsm`,jλs

′

m`′,j′ | �
∆, U , and are summarized by an effective Hamiltonian
which acts on the BCS ground states and the charge
ground states of the TSC islands [35],

Heff = (J + J̃) cos(ϕ+ ϕ0)x̂ax̂b. (11)

Here, we have introduced the couplings constants and the
anomalous phase shift,

J =
32|Γ′L3Γ′R2|

π2∆

∫ ∞
1

dx dy

f(x)f(y) [f(x) + f(y)] g(x)g(y)
,

J̃ =
64|Γ′L3Γ′R2|

π2∆

∫ ∞
1

dx dy

f(x)f(y) [g(x) + g(y)] g(x)g(y)
,

ϕ0 = arg[(Γ′L3)∗Γ′R2]. (12)

Moreover, we have defined the hybridization

Γ′m` ≡ πνm(λ↓m`,bλ
↑
m`,a − λ

↑
m`,bλ

↓
m`,a). (13)

The effective Hamiltonian in Eq. (11) is the second main
result of our work. By pulsing the couplings and phases
for a time τ such that

∫ τ
[J(t) + J̃(t)] cos[ϕ(t) +ϕ0(t)] =

~χ, the unitary time-evolution operator of the effective
Hamiltonian implements an XXχ ≡ exp(−iχx̂ax̂b) gate
for some parameter χ. It is well-known in the literature
that the XXπ/4-gate together single-qubit operations im-
plements a CNOT gate [43],

CNOT = X−π2 ,b · Y−π2 ,a ·X−π2 ,a ·XXπ
4
· Yπ

2 ,a
, (14)

where we have introduced the single-qubit gates Xθ,j ≡
exp(−iθx̂j/2) and Yθ,j ≡ exp(−iθŷj/2) with some pa-
rameter θ. We note that the CNOT-gate defined in
Eq. (14) uses the MSQ a as control and the MSQ b
as target. A CNOT′-gate in which the roles of control
and target-qubit are reversed can readily be obtained
by applying single-qubit Hadamard gates, CNOT′ =
Ha ·Hb ·CNOT ·Ha ·Hb with H` = (x̂`+ ẑ`)/

√
2. In con-

clusion, the combination of the single-qubit gates intro-
duced in the previous section together with the two-qubit
CNOT gate is sufficient for universal quantum computa-
tion with MSQs.

To assemble a scalable MSQ computer, we consider
unit cells comprised of two four-terminal islands and a
single reference island. This enables the implementa-
tion of a universal gate set comprised of arbitrary single-
qubits gates and a two-qubit entangling gate within each
unit cell. Importantly, such a unit cell can readily be
scaled to a linear array of multiple unit cells as depicted
in Fig. 2(b). The distance between the individual unit
cells in such an array is taken to be at most of the order
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of the superconducting coherence length ξSC. The coher-
ent exchange of quantum information between different
unit cells is facilitated by SWAP gates acting on MSQs
of neighbouring unit cells [35].

Before closing, we envision two candidate platforms for
a material realization of MSQs. The first platform are
topologically SC nanowires [36–41]. Here, we define the
SC islands by locally etching the mesoscopic SC that is
deposited on the nanowires. This creates semiconducting
tunnelling barriers with transparencies that are tunable
by local side gates [44–46]. It is worth mentioning that
Cooper pair splitting between parallel semiconducting
nanowires coupled to a common superconducting elec-
trode – the key ingredient of our proposal – has been
observed in recent experiments [47]. The second plat-
form which we envision for a MSQ realization are TSC
islands defined in a heterostructure of a two-dimensional
electron gas and a SC by means of top-down lithography
and gating [48]. A key advantage of these devices is that
they may enable rapid scaling from a single MSQ to the
muti-MSQ architectures of Fig. 2(b).

Conclusions. We have proposed a platform for univer-
sal quantum computation realized by conventional SC
leads addressing MSQs formed by the charge ground
states of four-terminal TSC islands. We have shown
how Cooper pair splitting enables single-qubit opera-
tions, qubit read-out, as well as two-qubit entangling
gates. Hence, our platform may provide an alternative
approach to superconducting quantum computation.
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