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Abstract 18 

Nanoblisters such as nanobubbles and nanotents formed by two-dimensional (2D) materials have been 19 

extensively exploited for strain engineering purposes as they can produce self-sustained, non-uniform in-20 

plane strains through out-of-plane deformation. However, deterministic measure and control of strain 21 

fields in these systems are challenging because of the atomic thinness and unconventional interface 22 

behaviors of 2D materials. Here, we experimentally characterize a simple and unified power law for the 23 

profiles of a variety of nanobubbles and nanotents formed by 2D materials such as graphene and MoS2 24 

layers. Using membrane theory, we analytically unveil what sets the in-plane strains of these blisters 25 

regarding their shape and interface characteristics. Our analytical solutions are validated by Raman 26 

spectroscopy measured strain distributions in bulged graphene bubbles supported by strong and weak 27 

shear interfaces. We advocate that both the strain magnitudes and distributions can be tuned by the 2D 28 

material-substrate interface adhesion and friction properties. 29 

 30 
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Two-dimensional (2D) materials are atomically thin crystals with unique properties that lend well to 32 

next-generation ultrathin electronic and optoelectronic devices [1-4]. It has been well established that 33 

mechanical strain can strongly perturb the band structure of these materials, giving rise to the possibility 34 

of using mechanical deformation to tune their electronic and photonic performance dramatically [5-9]. In 35 

fact, this principle, termed strain engineering, is now routinely used in manufacturing traditional 36 

semiconductor devices [10]. The strain engineering of 2D materials is particularly exciting because an 37 

individual atomic sheet is intrinsically capable of sustaining much larger mechanical strain compared to 38 

either their bulk counterparts or conventional electronic materials [11,12]. Also, the atomic thickness of 39 

2D materials allows them to be easily poked or pressurized from the third dimension (i.e. perpendicular to 40 

their plane of atoms) [13-17]. The resulting configurations including nanoscale bubbles and tents can be 41 

called by a unified name, 2D material blisters [13-20]. Recently, the considerable strain associated with 42 

these nanoblisters have created opportunities for the study of new fundamental physics and applications 43 

such as enormous pseudo-magnetic fields, large-scale quantum emitters, and so on [21-23].  44 

A major challenge in these systems is to find out or even control the strain in the blisters 45 

deterministically, calling for understanding and validating how the blister geometry intertwines with 46 

mechanics in these atomic sheets [24,25]. So far, self-similar profiles of the 2D material bubbles have 47 

been widely discovered in experiments [15,17,26,27]. However, it remains challenging to analytically 48 

relate the bubble and tent shape characteristics to the full-field strain distributions and experimentally 49 

prove the relation. Consequently, accurate strain tuning through blister shape adjustments is still elusive 50 

[21,22,24]. One difficulty comes from the intrinsically nonlinear coupling between in-plane strain and 51 

out-of-plane deformations predicted by the membrane theory [28]. More fundamental concern arises from 52 

the subtle nature of 2D materials, where the material thickness approaches the atomic scale and the 53 

surface is atomically smooth [29]. These features even challenge the applicability of continuum theories 54 

from a perspective of deformation physics [30-34]. As a result, the prevailing analysis of the strain 55 

distribution and strain-coupled physics and chemistry in 2D material blisters relies heavily on numerical 56 

techniques, such as case-by-case molecular dynamics (MD) simulations [22,24,35-37]. To deal with these 57 



4 
 

concerns, a combination of continuum theories with microscale experiments is highly needed and yet to 58 

emerge so far.  59 

Herein, we experimentally explore the strain field in nanoblisters formed by 2D materials accounting 60 

for different natures of 2D materials interfaces. Using tapping mode atomic force microscopy (AFM), we 61 

experimentally characterized a variety of bubbles and tents formed by graphene and MoS2 layers. Their 62 

shapes were empirically found to follow a simple power law, enabling closed-form analytical solutions to 63 

the Föppl–von Kármán equations at the membrane limit. Our results show that the strain distribution in 64 

the 2D material can be estimated by simply measuring the height and radius of the bubbles and tents, and 65 

that the strain highly depends on the interfacial interaction between the 2D material and the underlying 66 

substrate. To validate our analytical solutions, we experimentally carried out Raman mapping on 67 

pressurized graphene nanobubbles with strong (graphene-SiO2) and weak (graphene-graphene) shear 68 

interfaces. The measured and analytically predicted Raman shifts have found good match for both types 69 

of interfaces.  70 

We first investigate the shape characteristics of both nanobubbles and nanotents of 2D materials, 71 

which can form spontaneously or be created in a controllable manner. For the spontaneous case, 72 

nanometer-scale bubbles and tents form when monolayer or few-layer 2D materials are exfoliated or 73 

transferred on a target substrate. The formation mechanism is typically attributed to the inevitably trapped 74 

water, hydrocarbon, and/or nanoparticles at the 2D material-substrate interface during sample preparation 75 

[15,17]. The spontaneously formed nanobubbles and nanotents analyzed in this study were made by 76 

mechanically exfoliating few- and monolayer graphene and MoS2 from their bulk crystals on silicon 77 

substrate, or transferring CVD-grown MoS2 on gold or Al2O3 substrate [38]. Details on the transfer 78 

process for different types of samples are provided in the Methods section [39]. Figure 1a displays typical 79 

examples of nanobubbles formed by monolayer graphene on SiO2. When nanoparticles were trapped, 2D 80 

materials can drape around the nanoparticle, forming micro- or nano-tents as shown in Figs. 1b and 1c. To 81 

form controllable bubbles, we transferred monolayer graphene and a 4-layer MoS2 to cover pre-patterned 82 

micro-cavities in SiO2 to form suspended drumheads and then followed a well-established gas diffusion 83 
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procedure to bulge the drumheads [16]. In this case, the bubbles can be pressurized in a controllable 84 

manner (Fig. 1d [39]).  85 

The out-of-plane profiles of all the different types of bubbles and tents prepared by ourselves and 86 

collected from the literature are summarized in Fig. 2. Although the radii of the 2D material blisters range 87 

from tens to thousands of nanometers, we realized that the height profiles of bubbles and tents collapse 88 

onto two master curves if we normalize the out-of-plane deflection ( ) of each blister by its central height 89 

( ), and the radial positions ( ) by its radius ( ). We discovered that the collapsed height profiles can be 90 

described by a unified power form, 91 

 1  (1), 92 

where  is 2 for bubbles or 2/3 for tents. Note that Fig. 2 summarizes graphene and MoS2 bubbles and 93 

tents with aspect ratios ranging from 0.05 to 0.20. Remarkably, regardless of the aspect ratios, the types of 94 

2D material, the supporting substrates (silicon, alumina, or atomically flat 2D material flakes), the content 95 

in the bubble (liquid or gas), or the fabrication methods, all bubble profiles can collapse to Eq. (1) with 96 2 (Fig. 2a). We also found that for profiles of graphene and MoS2 tents, data obtained from MD 97 

simulations or coarse-grained (CG) modeling [22,24,36] can also collapse to Eq. (1) with 2/3 (Fig. 98 

2b). In fact, the empirical conclusion of 2  is a widely adopted simple membrane solution for blisters 99 

[48,49] and 2/3 is well matched with the analytical solution to an indented blister in the literature 100 

[28,50]. We thus conclude that this simple power form can be a good approximation for describing the 101 

profiles of 2D material bubbles and tents.  102 

Now that the out-of-plane displacement of 2D material blisters is readily available as given in Eq. (1), 103 

we can try to solve the in-plane displacement and then calculate strains out of displacements. Attributing 104 

to the atomic thinness of 2D materials, it is sufficient to simply use the membrane limit of the Föppl–von 105 

Kármán equations [28,48]. The in-plane equilibrium equation in terms of displacements is therefore:  106 

  (2), 107 



6 
 

where  is the in-plane displacement of the 2D material and  is the Poisson’s ratio. Plugging Eq. (1) into 108 

this equation and solving the 2nd order ODE using the finite condition when 0 can yield an analytical 109 

solution to the in-plane displacement: 110 

  (3),  111 

where  and  is a constant related to the slippage at the edge of the blister ( ). This 112 

explicit displacement field allows for the direct solutions for both the radial and circumferential strain 113 

fields: 114 

  
1 ,  – ,    (4a), 115 

 
1 ,  ,     (4b). 116 

Clearly, the sliding of the 2D material-substrate interface 0  can induce non-zero strain in the 117 

supported zone , which is important for strain engineering applications of 2D materials [35]. 118 

Typically, the edge of the 2D material blister is assumed to be fully clamped due to adhesion and strong 119 

shear interactions with the supporting substrate outside of boundary [11,22.16]. However, the atomically 120 

smooth surfaces of 2D materials make interfacial sliding particularly easy. Recent experiments on gas-121 

pressurized graphene bubbles revealed that the shear interactions between graphene and its substrate can 122 

be fairly weak, leading to nonlinear, deflection-dependent interface sliding displacements [14,51]. It has 123 

also been discovered that well-established theories assuming clamped conditions offer good 124 

approximations only when the deflection is small ( / 0.1 ), while experimental measurements 125 

deviated from theories with clamped boundaries in samples with large deflection [14]. Recent studies on 126 

2D material interface further highlighted the so-called superlubrication (near-zero friction) when a 2D 127 

material sits on atomically smooth substrates, including itself, which is very common in 2D materials 128 

devices [52]. 129 

Considering that the graphene and MoS2 blisters in Fig. 2 encompass either relatively strong 130 

interfaces with small deflections or atomically lubricated interfaces, our prime interest of this study is in 131 
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two limits: strong-shear limit (clamped, fully bonded interface) and weak-shear limit (sliding, frictionless 132 

interface). For the former, we can apply clamped boundary at the edge of the blister. For the latter, the 133 

stress and displacement in the outer supported region can be obtained as the classical Lamé problem in 134 

linear elasticity [53]. The stress and displacement continuity then leads to [39] 135 

 
0,   strong shear limit,   weak shear limit (5). 136 

Now Eq. (4) and Eq. (5) combined offer the complete analytical solutions to the strain field in 2D 137 

materials forming blisters, with either strong or weak interaction with their substrates. After appropriately 138 

choosing the  and  according to the specific blister shape and 2D material-substrate interface, one can 139 

easily compute the strain distribution inside and outside of a 2D blister by simply measuring its height 140 

and radius. We note that a generalized analysis may be performed by accounting for the detailed frictional 141 

resistance (e.g. the stick-slip behavior) at the 2D material-substrate interface [54]. 142 

In Fig. 3, we plot the strain distributions of the 2D material blister as solid curves using our equations. 143 

The strain is normalized by /  such that the distribution will only depend on the interface conditions 144 

and material properties, i.e. the Poisson’s ratio. Comparing Fig. 3a for bubbles and Fig. 3b for tents, it is 145 

clear that the strain gradients are much larger in tents, with strain divergence towards the center of the 146 

tents due to the assumed point load. Note that under the same aspect ratio, interface sliding can 147 

considerably reduce the strain level in 2D material blisters in comparison with blisters with strong-shear 148 

interfaces. This highlights the importance of accounting for the ultra-lubricated interface in the case that 149 

the 2D material is supported by an atomically smooth substrate.  150 

Next, we try to verify our analytical solutions numerically. We solved the nonlinear Föppl–von 151 

Kármán equations with clamped and slipping boundaries, where the bending behavior is also considered 152 

for generality [39]. The numerical solutions are plotted as markers in Fig. 3 for monolayer graphene with 153 

aspect ratios ranging from 0.05 to 0.20, to directly compare with the analytical solutions (solid curves). 154 

Since analytically solved strains are strictly proportional to / , after normalization, the solid curves 155 

are no longer dependent on the aspect ratio. However, the numerically solved strains show more 156 
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complicated dependence on the aspect ratio, because the markers for different aspect ratios do not fully 157 

collapse. Despite this small discrepancy, the overall good agreement between the two solutions indicates 158 

that for our experimentally observed blisters with aspect ratios ranging from 0.05 to 0.20, bending effects 159 

are negligible. Thus, the numerical results have verified that our analytical solution given by Eq. (4) is a 160 

reasonable estimation for strains in both bubbles and tents under both clamped and slipping boundary 161 

conditions.  162 

Our analytical solution, though verified numerically, is still challenged by a widespread concern on 163 

the breakdown of classical membrane theories at the atomic limit [30-34]. To examine the applicability of 164 

our analytical solutions, we performed graphene bulging experiments with intentionally designed strong- 165 

and weak-shear interfaces. Monolayer graphene sealed micro-cavities were fabricated by 166 

micromechanical cleavage of graphene over SiO2 substrate with pre-patterned 2.5-micron-radius holes 167 

(Fig. 4a). Following a well-developed gas diffusion method [16], we can create a pressure difference 168 

across the monolayer and bulge it in a controlled manner.  169 

The strong-shear-interface graphene bubble was generated by pressurizing a graphene monolayer on 170 

SiO2 with the maximum deflection less than 150 nm. Under this condition, the interface sliding was found 171 

to be minimal, thus is compatible with the clamped interface assumption [14]. To experimentally study 172 

the weak-shear case, we assembled a graphene-SiO2 supporting substrate for the graphene bubble (Fig. 173 

4b). First, few-layer graphene was transferred over a SiO2 micro-hole. The suspended portion of the 174 

multilayer graphene was then etched to open up the micro-hole. After creating an atomically flat region 175 

around the micro-hole, a monolayer graphene was precisely transferred to cover this micro-hole, resulting 176 

in a graphene drumhead supported by few-layer graphene [39]. Applying a differential pressure across the 177 

suspended graphene membrane, this graphene bubble was expected to bulge under weak-shear interface 178 

as the graphene-graphene interface can be considered as superlubricated.   179 

We performed multiple AFM and Raman characterizations on the graphene bubbles with well-180 

controlled interfaces [39]. For an axisymmetric graphene bubble, the G band shifts in the Raman 181 

spectrum are related to the strain components through the following equation [55]: 182 
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  (6), 183 

where  and  are analytically expressed in Eq. (4),  is the Gru�neisen parameter, and  is the shear 184 

deformation potential that details the amount of splitting in the G bands, which were experimentally 185 

calibrated for monolayer graphene ( 1.99 and 0.99) [56]. Therefore, analytical prediction for 186 

strain fields can be readily converted to analytical prediction for the G band shifts using Eq. (6). 187 

Particularly, at the center of the bubble where , the G band shifts are predicted by Eq. (4) and Eq. 188 

(6) to take a very simple form: 189 

    (7) 190 

where the constant  is  for bubbles supported by strong shear interfaces and is (1  by weak shear 191 

interfaces.  192 

Due to space limitations, we present the details of the experimental Raman characterizations in 193 

Supplemental Materials Note 2 [39]. Here, we first show the Raman G band shifts at the center of 194 

graphene bubbles as a function of /  in Fig. 4c, which is predicted to be linear by our analytical 195 

solution in Eq. (7). The markers represent experimental data for both SiO2- (brown) and graphene-196 

supported (green) graphene bubbles and the solid curves correspond to predicted G band shifts for strong- 197 

(green) and weak-shear-interfaced (brown) 2D material bubbles. By setting the Poisson’s ratio of 198 

graphene to be 0.165 in Eq. (7), we find good agreement between our theoretical predictions and 199 

experimental measurements. This may confirm the applicability of our simplified membrane theory in 200 

relating the out-of-plane deformations to in-plane strains for 2D material blisters.  201 

In Fig. 4d, we further normalize both the measured and predicted G band shifts by /  and plot 202 

them as functions of the normalized radial position / . Our weak-shear and strong-shear model can 203 

partially capture the full-field strain distribution in graphene-on-graphene and graphene-on-SiO2 bubbles, 204 

respectively. However, deviation between predicted and measured G band shifts occurs and enlarges 205 

towards the edge of the bubble, especially for SiO2-supported graphene bubbles. We attribute such edge 206 

deviation in Fig. 4d to the limited spatial resolution of Raman spectroscopy (~1 μm) and the possible 207 

doping effect by the substrate [57,58], which are further elucidated in Fig. S9 and S10 [39]. As for 2D 208 
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material tents, a recent study reported the Raman 2D band shifts for a SiN/Si-supported graphene 209 

drumhead subjected to nanoindentation [59]. The experimental results can be well captured by our 210 

analytical solution to 2D material tent with strong-shear interface (Fig. S11 [39]). We thus claim that our 211 

analytical solutions in Eq. (5), enabled by the shape characteristics in Fig. 2, can offer valid estimation for 212 

the in-plane strain in 2D material bubbles and tents simply by knowing their height and radius. It is 213 

especially true at the center of bubbles by Eq. (7), which may, in turn, be used to measure the Gru�neisen 214 

parameter for the broadly extended 2D material family. 215 

The 2D material bubble and tent structures have been exploited in many recent studies [17-22,27,60-216 

64], where people typically use pre-patterned micro-pillars or interface-confined contents to produce a 217 

single or an array of 2D material blisters. Our findings show that the strain in blisters highly hinges on 218 

their aspect ratio ( / . We note that a balance between adhesion (which favors large areas of contact) 219 

and stretching energy (which diminishes in blisters of large radius) dictates a constant aspect ratio: 220 

  / / /   (8). 221 

where  is energy change per unit area,  is the in-plane stiffness of the 2D material, and  is a 222 

constant prefactor. Equation (8) implies that the aspect ratio or ultimately the strain of a 2D material 223 

bubble or tent is dominated by the ratio of the 2D material-substrate adhesion to the in-plane stiffness of 224 

the 2D material. In fact, this interface- and stiffness-dependent out-of-plane deformation characteristic has 225 

been observed at a variety of length scales — from graphene to polymer films with thicknesses ranging 226 

from 1 nm to 1 mm [50]. Here, we determine  for 2D material bubbles and tents of both strong- and 227 

weak-shear interfaces in Table 1 [39]. Notably, recent experimental discovery of the constant aspect ratio 228 

of 2D material bubbles for a given 2D material-substrate system provided a good validation [17], and 229 

there is no available experimental data for 2D material tents so far. 230 
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Figure Captions 237 
 238 
FIG. 1. From top to bottom: atomic force microscopy (AFM) phase and height images of spontaneously 239 
formed graphene bubbles on SiO2 (a), a multilayer graphene tent on SiO2 (b), and a CVD-MoS2 tent on 240 
gold film (c). (d) From left to right: optical image of graphene flakes exfoliated on pre-patterned SiO2 241 
with micro-cavities, AFM height images of a monolayer graphene bubble, and a 4-layer MoS2 bubble. 242 
Note that (S) represents bubbles or tents formed spontaneously while (P) represents those formed by 243 
controllable air pressurization. The unit for all height bars is nm. 244 
 245 
FIG. 2. Universal shape characteristics of 2D material bubbles and tents. (a) Normalized bubble profiles 246 
measured by our experiments and collected from literature. Note that samples from Ref. [17] feature 247 
atomically smooth interfaces, are labeled by *. (b) Normalized tent profiles measured by our experiments 248 
and simulation results in the literature. The simulation data about graphene and MoS2 is from Ref. [36] 249 
and Ref. [24], respectively.  250 
 251 
FIG. 3. Normalized strain distribution curves predicted by our analytical solution (solid lines) and solved 252 
by numerical analysis (markers) in bubbles (a) and tents (b), subjected to both clamped (strong interface) 253 
and frictionless (sliding interfaces) boundary conditions. The strain is normalized by / , giving rise to 254 
deflection-independent curves. The numerical results are solved for a monolayer graphene with aspect 255 
ratios ranging 0.02 / 0.2. 256 
 257 
FIG. 4. Schematics of the graphene drumheads formed on a SiO2 substrate (a) and on a graphene-covered 258 
SiO2 substrate (b). (c) Raman shifts of the G band at the center of graphene bubbles predicted by our 259 
analytical solution (solid curves) and measured by our experiments (markers). (d) Normalized Raman 260 
shifts of the G band ( / ) as functions of the normalized radial position ( / ) for monolayer 261 
graphene bubbles.  262 
 263 
 264 

 Table 1. The prefactor  that determines the aspect ratio by /  in Eq. (8). 

Shape Strong shear Weak shear 

Bubble 
 

24 15 7  
65 

Tent 
 

72 15 3  18 

 265 

 266 

 267 
 268 

 269 
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Figure 2 274 
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