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The intermittency of a passive scalar advected by three-dimensional Navier-Stokes turbulence at
a Taylor-scale Reynolds number of 650 is studied using direct numerical simulations on a 4096> grid;
the Schmidt number is unity. By measuring scalar increment moments of high orders, while ensuring
statistical convergence, we provide unambiguous evidence that the scaling exponents saturate to 1.2
for moment order beyond about 12, indicating that scalar intermittency is dominated by the most
singular shock-like cliffs in the scalar field. We show that the fractal dimension of the spatial
support of steep cliffs is about 1.8, whose sum with the saturation exponent value of 1.2 adds up to
the space dimension of 3, thus demonstrating a deep connection between the geometry and statistics
in turbulent scalar mixing. The anomaly for the fourth and sixth order moments is comparable to
that in the Kraichnan model for the roughness exponent of 4/3.

The mixing of a substance in a complex turbulent flow
is a generic and fundamental problem which serves as a
paradigm for many processes in nature and technology
ﬂﬁ] The basic characteristic of such turbulent systems
is intermittency, manifested as intense and sporadic fluc-
tuations of the small scales, which are not captured by
classical mean field theories ﬂa, [ﬂ] Two important exam-
ples of intermittent systems are three-dimensional (3D)
Navier-Stokes (NS) turbulence [§, [d] and 3D scalar tur-
bulence ﬂﬁ, L‘ITl]]—a short phrase for passive scalars mixed
by NS turbulence.

Scalar turbulence provides a clear example of a generic
feature of nonlinear multiscale phenomena, namely the
connection between the multifractal scaling of statistical
moments of the physical quantity or field under consider-
ation to the geometric properties of the developing coher-
ent structures. This intimate connection extends beyond
fluid mechanics and can be found in various other fields
of physics and beyond, such as in fracture mechanics of
solids [19], nonlinear fiber optics [13], and bitcoin mar-
kets |. In all such multifractal statistical processes,
quasi-discontinuous features characterized by steep cliffs
or fronts abound, for instance, see Fig.[Il In the context
of 3D turbulence, the influence of such cliffs on scalar
intermittency has remained an open question.

In the related problems of Burgers turbulence ﬂE—lﬁ]
and the Kraichnan model HE] for a scalar advected by a
synthetic velocity field with no temporal memory, much
progress has been made on this particular subject ]
However, the finite-time correlations of the advecting 3D
NS turbulence has impeded theoretical progress, with the
high spatial and temporal resolution requirements impos-
ing considerable strain on empirical work. A large num-
ber of experimental and numerical efforts continue to be
made on understanding scalar intermittency @ @], but
the connection between the intermittent statistics and

the spatial geometry in 3D scalar mixing, has eluded a
clear demonstration.

In this Letter, we report the precise quantification
of small-scale intermittency of a statistically stationary
scalar field, advected by 3D isotropic NS turbulence using
direct numerical simulations (DNS). We connect the sta-
tistical footprints of the well-mixed scalar regions known
as ramps ], to the steep cliff regions. The scal-
ing exponents Cg of the scalar correlations, which will
be defined further below, saturate for moment orders
above about 12, to a constant (%  confirming that the
almost-shock-like steep scalar fronts characterize scalar
intermittency in 3D NS turbulence. We will also show
that the spatial support of the cliffs with a fractal di-
mension of Dr = 1.8 combines with the saturated scal-
ing exponent ¢? to the space dimension, yielding the
result (¢, + Dp = 3, where 3 is the space dimension, thus
demonstrating the intimate link between the geometry
and statistics in turbulent passive scalar mixing.

We use data from pseudo-spectral DNS of isotropic tur-
bulence, computed using 4096 mesh points in a periodic
box of size L. A statistically steady state was obtained
by forcing the low Fourier modes of the velocity field
ﬂ;lya] The Taylor-scale Reynolds number Ry = 650, the
Schmidt number, Sc¢ = 1, and the Taylor-scale Péclet
number Pey = RxSc = 650. The passive scalar (O)
is evolved using the diffusion-advection equation in the
presence of a uniform mean gradient G = (G, 0,0) along
the z-direction, where G # 0 is a constant, such that
© = 0+ Gz, 0 here is the scalar fluctuation. The grid res-
olution A/nx = 1.1, A being the grid spacing and 7k the
Kolmogorov length scale. The ratio of the magnitude of
the largest gradient computed in the DNS to the largest
gradient possible in the flow (0yms/nx ~ GL/nKk ~ Ri/Q)
is ~ O(1), where 6,;,5 = +/(62) and (-) denotes combined
space-time averages, hence the numerical resolution is
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FIG. 1. Ramp-cliff structures in a scalar field, ® = 0 + Gz,
here 6 is the scalar fluctuation and (G, 0,0) is the mean gra-
dient, at Ry = 650 and the Schmidt number Sc =v/D = 1,
where v is the kinematic viscosity of the fluid and D is the
scalar diffusivity. L is the size of the computational cube in
one direction. The main figure to the left plots four 1D pro-
files of © in the z-direction, along which the mean gradient is
imposed. Examples for ramps and cliffs are indicated by ar-
rows as well as the mean scalar concentration profile (dashed
lines). Profiles are shifted in steps of 5 units with respect to
each other for clarity. The vertical solid lines indicate the spa-
tial positions for the magnifications of the scalar fluctuation
profiles plotted to the right. Grid resolution and Kolmogorov
length nx are indicated.

adequate to resolve the largest scalar gradients. We have
used 21 temporal snapshots over 10 eddy turnover times,
with each snapshot rotated over 146 angular directions
to extract the isotropic statistics of the anisotropic scalar
field. In total, we have used 210 trillion data samples to
obtain the results. For details on the exact laws of the ve-
locity and mixed velocity-scalar statistics and statistical
convergence tests on the data, we refer to the supplemen-
tal information (SI) and Refs. 7).

The scalar signal organizes itself into conspicuous pat-
terns as shown in Fig. [Il consisting of two distinctive
features: (i) ramp regions where the total scalar gradient
V0 + G is almost zero; and (ii) high gradient cliffs which
are interspersed between ramps. The small figures on
the right demonstrate clearly that the scalar increment,
0,0 = 0(x+r) — 0(x), can jump by the order GL over
r = |r| that is just a few multiples of the Kolmogorov
scale nx (which is also the smallest dynamically signif-
icant scale in the scalar field). The ramp-cliff structure
are connected to the mean scalar gradient in the present
DNS, and are known to cause the breakdown of local
isotropy in the scalar field HE] The cliffs are caused
by the action of large scales in the scalar field, even in
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FIG. 2. Scalar increment exponent Cg vs. moment order p.

(a) present DNS: Pey = 650: dashed line at saturation expo-
nent, gﬁo = 1.2. Error bars indicate 95% confidence interval.
(b) Comparison of present DNS (shaded region) with previ-

ous results: (V) Pex = 220 [41]; (O) Pex = 280 [29]; (A)
Pey =396 |32]; (0) Pex = 580 [34]. Dash-dotted line shows
normal scaling Cg = p/3; dashed line is the model of Ref. IE]

the absence of a mean gradient ﬂﬁ, @] The generic ex-
istence of scalar cliffs in turbulence suggests that these
local spatial barriers to scalar mixing have a significant
impact on scalar intermittency.

In order to assess scalar intermittency, we define the pth
order scalar structure function, Sy (r) = ((6,6)?). Due
to the anisotropic mean scalar gradient, S} (r) depends
on the separation vector r, however, the isotropic sec-
tor &gﬂ)ﬂo extracted from the SO(3) decomposition
48, [49] of SPH(r), depends solely on the separation dis-
tance, r [50]. In the inertial range, nx < r < ¢, where
¢ is the macro-scale, 30 < r/nx < 300, ((6,0)F)o follow
power laws, ((6,0)P)¢ ~ r¢s , where Qg denote the pth or-
der exponents (see SI for details). The higher order expo-
nents are determined using extended self-similarity (ESS)
[51], by plotting ((6,.0)P)¢ against ((5,8)%)¢ for p > 2.
We have verified that estimating Cg using local slopes,
e.g. M], or compensated structure functions, e.g. HE],
yield results consistent with the ESS results.

The scaling exponents Cf, are plotted against moment or-
der p at Pey = 650 in Fig. 2la). The exponents saturate
to ¢/, = 1.2, indicated by the horizontal line, for p > 12.
This is the clearest indication that the scalar fluctuations
are limited in magnitude only by the largest allowable
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FIG. 3. Integrands of scalar increment moments (P(-) denotes
PDF of (-)) as functions of scalar increments, for orders 6 and
16 at r/nx = 55 (lower end of the inertial range), on lin-
log scales; moments of orders up to 20 converge as well and
confirm the saturation of exponents but are not shown here.
The integrands are normalized by respective moments such
that the area under each curve is unity.
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FIG. 4. PDF of scalar increments across the inertial range,

multiplied by T*CZO, where ¢Z is the saturation exponent
(Fig. ). The PDF tails collapse, confirming saturation of
exponents.

gradients in the field (largest temperature difference di-
vided by the smallest length scale). The (%, = 1.2 curve
intersects the normal scaling curve at p = 3.6. In some
sense, it is possible that this represents the situation for
infinitely large Pey. Figure (b) compares the present
exponents with previous, lower Pey, results. While our
data robustly confirm that the exponents saturate, it is
hard to reach a similar unambiguous conclusion from the

previous results in the literature @@, @, , @]

The statistical convergence of the moments of order p
up to 20 was confirmed by the rapid decay of the moment
integrands, (0,0)PP(4,.0), where P denotes the probabil-
ity density function (PDF). The integrands of moment
orders 6 and 16 are shown in Fig.[3] each for r in the low
end of the inertial range. The integrands peak before the
tail contributions decay, ensuring statistical convergence
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FIG. 5. Log-log plot of the number N(r) of cubes of side r

containing the steepest fronts vs. size r. The ordinate is com-
pensated by rPF | where Dr = 1.8 is the fractal co-dimension
of the fronts. The plateau region (@) corresponds to the scal-
ing 7~PF, indicated by the horizontal dashed line. At the
smallest and largest 7, the dimension of the fronts is 2 (cor-
responding to flat fronts) and 3 (which is the Euclidean di-
mension of the flow), respectively. Inset shows the PDF of
the normalized gradient z, |z| > 0.2 (dotted lines) is used to
calculate N(r).

of the moments. Saturation of exponents at higher orders
implies that, for scalar jumps [6,-0| 2 Orms, P(6,-0) ¢
[23, [53). Figure @ verifies that this is indeed the case,
with ’P(6T9)r_<go collapsing for |8,-6| > 30,ms, for all in-
ertial separations. The inference is that the saturation
of exponents arises because of the dominance of the high
order moments by features that do not change with scale,
suggesting that the gradients are of the order 0,5 /nxk .

We now turn to quantifying the dimension of the spatial
support of the cliffs where strong scalar gradients tend
to concentrate in sharp fronts (Fig.[dl). The dimension of
such fronts is estimated by the spatial support of regions
of the strongest gradients of O(0,,s/nK) with cubes of
edge size 7, and counting their respective number N (r)
for different . As shown in the inset of Fig.[Bl gradients
greater than 20% of 0,.,,s/nx (marked by dotted lines)
corresponding to 51/((96/0x)?), are used to determine
N(r). We chose the threshold of 20% as a good rep-
resentative of gradients of the order 6,.,,,s/nKk occurring
with low probability (see inset to Fig. 5). [The use of a
somewhat different threshold alters the scaling range in
Fig. 5 but does not alter the dimension itself.] The plot
of N(r) wvs. r for such fronts shown in the main body of
Fig. Bl is compensated by 71-® (see below for the ratio-
nale), and has three scaling regimes: (i) at the smallest
scales, a slope of —2 which corresponds to flat fronts;
(ii) at r/nk € [4,30], for which the slope from the least-
squares fit is Dp = 1.79 4+ 0.01, corresponding to the
spatial subset that supports the steep fronts in the scalar
field; (iii) at the largest scales, the slope is —3 which
corresponds to the Euclidean dimension of the flow. We
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FIG. 6. Flatness anomaly (4§ = 2¢5 — ¢§) (open symbols)
and hyper-flatness anomaly (1/f = 3¢5 — ¢J) (closed symbols)
for the scalar vs. flow roughness £. Circles correspond to 3D
Kraichnan model, (O) [54] and (@) [55], while triangles are
for 3D NS flow at Pey = 650, with the roughness parameter

€=4/3.

confirm, for the first time in 3D NS flows, that the sat-
uration exponent (% and the box counting dimension of
the steep fronts Dy are related to the space dimension,
d=3, as

¢ +Dp=d. (1)

The confirmation of this relation in Navier-Stokes turbu-
lence is remarkable since it directly connects a property
of the highly intermittent statistics of the scalar to the
spatial geometry of mixing barriers in the flow. The geo-
metrical features of the scalar cliffs shown here has inter-
esting parallels beyond fluid turbulence, e.g. in fracture
processes in solids, where a network of steep cliffs with a
fractal dimension Dr = 1.7, detected on a fracture sur-
face and related to the multifractal spectrum of height
fluctuations, tends to saturate [12].

The anomaly in the passive scalar field advected by a 3D
NS flow at high-R, is comparable for orders 4 and 6 to
that advected by the d-correlated 3D Kraichnan model
ﬂﬂ, @], as seen in Fig.[fl where we quantify the degree of
anomaly of exponents against the roughness parameter
of the flow (which varies between 0 and 2 for Kraich-
nan model and is 4/3 for NS turbulence). This observed
agreement is plausible because, in a high-R) NS flow,
the small scales evolve with temporal rapidity, and the
normalized exponents, wg = (p/2)¢ — 3 , approach the
Kraichnan limit of a flow without memory. Scalar expo-
nents for the Kraichnan model saturate at different values
for different roughness parameters , @], and the ob-
served correspondence with the 3D NS results may not
hold for high-order moments.

Our conclusive result here is that in a scalar field ad-
vected by 3D NS turbulence, the exponents Cﬁ saturate
to ¢% at large orders and that the saturation exponent
is connected to the fractal dimension of the steep fronts.

4

We do not expect ¢? to be universal, since Cg itself is
non-universal m, , but the fact that scalar expo-
nents saturate in 3D NS flows can have important con-
sequences. For instance, the minimum Hoélder exponent
of 0, hf , = lim, o f/p = lim, oo ¢S /p = 0, im-
plies that shock-like quasi-discontinuities, or steep fronts,
characterize the large gradients of the scalar field, remi-
niscent of 1D Burgers flow. However, while the Burgers
flow displays a bi-scaling behavior, the lower order scalar
exponents appear to have a quadratic dependence on the
order, similar to that derived for scalar advection in high-
dimensional Kraichnan model ﬂﬂ] This work sets the
stage for similar investigations in the low (Sc¢ <« 1) and
high (Sc¢ > 1) Schmidt number regimes which have im-
portant physical applications @ @ We conjecture that
the strong diffusion in the Sc¢ < 1 limit may prevent such
a saturation, whereas in the Sc > 1 case, the weak diffu-
sion may enhance a saturation to the 1D Burgers limit. A
careful analysis on the link between geometry and statis-
tics in these two regimes is ongoing and will be reported
as future work.
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