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Abstract

We investigate the collective dynamics and nondegenerate parametric resonance (NPR) of copla-

nar, interdigitated arrays of microcantilevers distinguished by their cantilevers having linearly ex-

panding lengths and thus varying natural frequencies. Within a certain excitation frequency range,

the resonators begin oscillating via NPR across the entire array consisting of 200 single-crystal sili-

con cantilevers. Tunable coupling generated from fringing electrostatic fields provides a mechanism

to vary the scope of the NPR. Our experimental results are supported by a reduced-order model

that reproduces the leading features of our data including the NPR band. The potential for tailor-

ing the coupled response of suspended mechanical structures using NPR presents new possibilities

in mass, force, and energy sensing applications, energy harvesting devices, and optomechanical

systems.
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With the emergence of micro and nanoelectromechanical (M/NEMS) systems in recent

decades, M/NEMS resonator arrays have been increasingly employed in the practical study

of the complex, collective behavior of coupled oscillator systems. Large arrays of coupled

MEMS resonators were first reported in the seminal work of Buks and Roukes [1], whereby 67

electrostatically coupled, doubly clamped beams produced rather unanticipated responses.

Instead of featuring 67 collective vibrational modes, their nonlinear responses exhibited a

small number of asymmetric resonance peaks, which were broad relative to the expected

mode spacing, extended beyond their predicted band edges, and displayed abrupt pattern

switching behavior. Subsequently, M/NEMS resonator arrays have been shown to exhibit a

host of nontrivial dynamics due predominantly to their nonlinear nature including intrinsi-

cally localized modes [2–4], multistability and hysteresis [5], and synchronization [6–8]. The

applicability of these M/NEMS resonator arrays also has been wide-ranging and includes

signal processing applications such as radio frequency (RF) filtering [9] and frequency conver-

sion [10], oscillator phase noise reduction through synchronization for enhanced clocking and

frequency stability [11–14], and ultrasensitive mode-localized sensing [15–18]. Many of these

effects and their derived applications fundamentally depend on the complicated interplay

between various constituents of the array due to coupling mechanisms which are generally

mediated elastically [19–21], optically [22–24], or electrostatically [1, 25–27]. While theo-

retical investigations into large degree of freedom resonator arrays commonly focus on the

system’s response to changes in coupling parameters and natural frequencies [6, 28–30], ex-

perimental implementation of such devices remains challenging because they usually require

complicated coupling topologies and complex readout transduction schemes. Nonetheless,

device realization of globally tunable coupled array systems is relatively straightforward,

especially with electrostatic coupling which does not necessitate additional piezoelectric or

optical device layers.

Customarily, the electrostatic coupling or drive configurations in M/NEMS systems nat-

urally give rise to parametric excitation and resonance through time-dependent, nonlinear

electrostatic forces which effectively create modulating spring constants. Utilizing electro-

static parametric resonance in M/NEMS structures has become ubiquitous principally due

to its capability of producing resonant responses when excited at frequencies other than at

the system’s natural frequency, along with the ease of implementation. These systems are

routinely described by a generalization of Mathieu’s equation, namely the nonlinear Hill’s
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equation. It is well known that Mathieu’s equation has parametric instability tongues that

exist near frequencies f = 2fNM
j /k where fNM

j is a jth natural frequency of the system,

k = 1, 2, . . ., and the superscript NM denotes a normal mode [31]. These critical frequency

values represent fundamental parametric resonance of order k and have been explored in

M/NEMS systems for reasonably high values of k despite the fact that higher-order reso-

nances progressively have exponential narrowing of their instability regions [32, 33].

Further possibilities of parametric resonance exist in multi-degree of freedom systems

where the possibility of mutual interaction of eigenmodes exists. Nondegenerate parametric

resonance (NPR), also known as combination parametric resonance [31], occurs in neighbor-

hoods near frequency values f ≈ (fNM
j ± fNM

l )/k for j, l = 1, 2, . . . and k = 1, 2, . . . where

fNM
j and fNM

l correspond to distinct normal modes of the system. In general, NPR emerges

in systems with time-dependent mode couplings, which results in frequency mixing and para-

metric resonant responses at sums or differences of the system’s natural frequencies. While

NPR has been well studied theoretically [31, 35, 36], actual implementation of NPR in

M/NEMS systems has been limited [37–42] and has not been observed in large M/NEMS

arrays to the best of our knowledge.

In this Letter, we consider both theoretically and experimentally the complex behavior

and NPR of coupled, parametrically driven, interdigitated arrays of microcantilevers with

linearly changing cantilever lengths. More specifically, we describe herein the array-spanning,

summed-type NPR that occurs over a wide frequency band due to the distinctive spatially

confined mode structure and the associated natural frequency distribution resulting from

the geometry of the device.

As shown in Fig. 1(a), the device is comprised of two opposing, partially interdigitated

cantilever arrays with 100 cantilevers apiece. Each array has cantilever lengths expanding

linearly across the device in opposite directions with a maximum length of Lmax ≈ 500 µm

and a minimum length of Lmin ≈ 350 µm. The width and thickness of the cantilevers are

b ≈ 20 µm and h ≈ 5 µm respectively. Additional device parameters include the gap length

between neighboring counter-orientated cantilevers, the length of the compliant overhang,

and the length of the overlap region. These parameters respectively correspond to g ≈ 5 µm,

Lo ≈ 100 µm, and Le ≈ 150 µm. Fabrication process details can be found in [43].

In the overlap region, electrostatic coupling is generated through the asymmetries in

the fringing fields between neighboring cantilevers and serves to produce an electrostatic

3



restoring force as illustrated in Fig. 1(b). The electrostatic force per unit length in the

overlap region defined by Ln − Le ≤ ŷ ≤ Ln, acting on the nth cantilever, F e
n(ŷ, t̂), can be

approximated by [43]

F e
n = ασV̂ 2

(
ŵn+1−ŵn

h

1 + σ| ŵn+1−ŵn

h
|2p
−

ŵn−ŵn−1

h

1 + σ| ŵn−ŵn−1

h
|2p

)
, (1)

where ŵn(ŷ) is the out-of-plane defection of the nth beam and V̂ (t̂) is the time depen-

dent voltage applied across the arrays. The remaining terms, α, σ, and p, are geometry-

dependent fitting parameters which were found to be α = 2.45× 10−6 N ·mV−2, σ = 0.133,

and p = 1.191. In order to motivate the possibility of NPR actuation within the device,

further examination of Eq. (1) is necessary. Assuming V̂ (t̂) = V̂ac cos (ωD t̂) where ωD is the

excitation angular frequency, we find after linearizing Eq. (1) that the electrostatic force per

unit length can be approximated by

F e
n ≈

ασ

h

V̂ 2
ac

2

(
1 + 2 cos(2ωD t̂)

)(
ŵn+1 − 2ŵn + ŵn−1

)
. (2)

Eq. (2) represents a coupled Mathieu-type term [31] which produces kth order NPR excitation

at critical NPR frequencies f = 2fD ≈ (fNM
j + fNM

l )/k.

In order to experimentally investigate the dynamics of the arrays, the devices were fixed

on a stage in a vacuum chamber (VC) at pressure of ≈ 10−3 Pa as depicted in Fig. 1(c).

The out-of-plane motion of the cantilevers was observed using an optical setup consist-

ing of a 1× long working distance objective (LWDO), a fiber-optic illuminator (FOI), a

beam splitter (BS), a zoom lens (ZL), and a camera (CAM). Each measurement involved

applying a time-varying voltage undergoing a linearly chirped frequency sweep given by

V̂ (t̂) = V̂ac cos [2π(f0t̂± kt̂2/2)] to one array while grounding the opposing array. This

time-varying voltage was produced by a function generator (FG) and a high voltage ampli-

fier (HVA). With f0 being the starting chirp frequency, the drive signal was either up-chirped

or down-chirped over a range of ≈ 26 kHz to ≈ 56 kHz at a rate of k ≈ 107 Hz/s. Since the

camera has a frame rate of ≈ 30 s−1, the captured data only gives a qualitative estimate

to the magnitude of a beam’s deflection time-averaged over many oscillation periods. As

Fig. 1(d) highlights, large cantilever deflections scatter light more readily, leaving their image

noticeably darker relative to non-oscillating cantilevers. The estimated vibrational ampli-

tude of each cantilever was determined by the associated grayscale pixel values at the ends
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of the beams. Pixel averaging was performed over 20 pixels to reduce the noise in the mea-

surement and background subtraction was performed to reduce errors caused by nonuniform

illumination of the sample. Modal pattern maps were generated by obtaining the grayscale

pixel values from each video frame and concatenating them together across frequency space

as Fig. 1(e) exemplifies. These experimental modal patterns shown in Fig. 1(e) primarily

resemble the normal mode shapes predicted by FE analysis as presented in Fig. 1(f).

While the measurement technique described above is straightforward and provides qual-

itative estimates for the normal mode shapes and relative vibrational amplitudes, a conse-

quential drawback of its simplicity is that it only gives the system’s response at a specified

drive frequency and provides no direct measurement of the oscillation frequency of the in-

dividual cantilevers. Experimental verification of first-order NPR actuation in the arrays

requires that the first-order NPR frequency condition, fD ≈ (fNM
j + fNM

l )/2, be satisfied

and appropriately measured, which is a challenging proposition considering our limited fre-

quency measurement capabilities. In order to circumvent this difficulty, the measured NPR

mode shapes were cross-correlated with the measured normal mode shapes. Assuming that

the normal modes oscillate at the drive frequency, this procedure gives an estimate of the

frequency response of the NPR modes. As shown in Fig. 2(a) and 2(b), the down-chirped re-

sponse at V̂ac ≈ 40 V produced 15 distinct NPR modes, which are highlighted in the insets.

The normal modes responsible for these excited NPR modes were determined by finding

the region within the modal pattern map which gave the maximum 2-dimensional cross-

correlation with a given NPR mode in a specified array. The analysis was performed across

the entire frequency space outside of the NPR band and was subject to the constraint that

the cantilevers remain aligned to themselves. As an example of the results obtained from

the described procedure, Figs. 2(c)–2(h) show the strong similarity between NPR mode 8

and the matching normal modes.

With the NPR-generating normal modes identified, cantilever-averaged resonance curves

were used to find the peak resonant frequencies of the jth normal mode in Array 1, fNM,1
j , and

the lth normal mode in Array 2, fNM,2
l . Additionally, the peak resonant frequencies of the

mth NPR mode for Array 1 , fNPR,1
m , and Array 2, fNPR,2

m , were found for their respective

cantilever-averaged resonance curves. These frequencies, fNPR,1
m and fNPR,2

m , are not the

oscillation frequency of the NPR modes, but the drive frequency at which the NPR modes

have peak resonance. All peak locations were determined by fitting a localized quadratic
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polynomial using the method of least squares. As shown in Fig. 2(i), the frequency deviation

from the NPR frequency condition was calculated by ∆f = fNM,1
j + fNM,2

l − 2fD, where we

have taken fD = (fNPR,1
m + fNPR,2

m )/2 to be the drive frequency averaged about the NPR

peak resonances in both of the arrays. The maximum observed frequency deviation from

ideal NPR frequency condition for all the modes was less than 15 Hz, which conclusively

demonstrates that the modes were excited via the NPR mechanism.

Additional experiments were performed at higher voltages to explore the effects of the

nonlinearities and the expanded parametric instability regions produced from the stronger

coupling constant. Figure 3 shows the frequency response at V̂ac ≈ 56 V and V̂ac ≈ 81 V

using a down-chirped drive. At V̂ac ≈ 56 V, many NPR modes were actuated, especially

along the periphery of the device, as the critical coupling strength was achieved for para-

metric instability. As the drive voltage was increased to ≈ 81 V, a well-defined NPR band

from ≈ 34 kHz to ≈ 42 kHz formed and nearly all the cantilevers were oscillating to some

degree. The extent of the NPR actuation directly depended on the applied voltage, which

is consistent with Eqs. (1) and (2).

To explain the dynamics more rigorously, a reduced-order (RO) model was developed

using the Galerkin decomposition under the direction of Euler-Bernoulli beam theory [26,

34]. Full details of the RO model are described in the Supplemental Material. Numerical

solutions were generated by solving the RO model’s system of equations describing the

dynamics of each individual beam using Runge-Kutta methods. As shown in Fig. 4(a), the

simulated modal patterns qualitatively display many of the observed experimental features.

Additional analysis on the spatial and temporal dynamics of the arrays using the RO model

and spectral analysis further confirmed NPR actuation within our system. Power spectral

densities using Welch’s method were calculated for each frequency step in the numerical

solution and concatenated together to form spectrograms. Whereas cantilevers near the

center of the arrays were principally driven by fundamental parametric resonance within the

NPR band, cantilevers near the periphery of the arrays were excited strictly by NPR within

the NPR band and followed the relation fD ≈ (fNM
j + fNM

l )/2 for the jth and lth modes as

indicated by the responses of beams 10 and 11 in Figs. 4(b)–4(d). A similar analysis was

performed on other adjacent beams within the array, and this provided further confirmation

that the excitation of the beams outside of the spatially confined normal modes in the NPR

band was principally due to the NPR mechanism.
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In this Letter, we have demonstrated NPR excitation in large arrays of coupled, inter-

digitated MEMS cantilevers. The distinctive device topology produced spatially confined

mode structures with mode-to-mode coupling between opposing arrays, which permitted

efficient NPR actuation within the NPR frequency band. Exploiting NPR in future engi-

neered M/NEMS systems could facilitate device operation at a multitude of frequencies,

possibly enabling bandwidth expansion through frequency conversion and greater tunability

of M/NEMS devices for applications such as resonance based sensing. Furthermore, these

arrays could potentially be utilized as a nondegenerate parametric amplifier by applying a

small-signal at fNM
j to one array while pumping at fD ≈ (fNM

j + fNM
l )/2 on the opposing

array leading to signal amplification and phase noise reduction [44]. The high sensitivity

of these coupled arrays to environmental perturbations will likely open new and interesting

sensing scenarios based on NPR-actuated collective pattern recognition rather than on the

frequency monitoring of individual elements.
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FIG. 1. (a) Schematic of the interdigitated, variable length microcantilever arrays. The actual

device has 200 cantilevers. Electrostatic coupling between oppositely-oriented, nearest-neighbor

cantilevers is generated via fringing electrostatic fields in the overlap region designated by Le.

Long-range mechanical coupling is produced in each array’s overhang, which is defined by Lo and

delineated by the dotted lines on Array 1 and Array 2. (b) Results from finite element (FE) analysis

illustrating the fringing electrostatic field between adjacent cantilevers in the overlap region. This

field provides a restoring force between neighboring beams as indicated by the white arrows. The

lengths of the black arrows are proportional to the electric field strength at the given locations.

(c) Schematic of the experimental setup. (d) An optical micrograph (top) of the center of the

device being actuated at a drive frequency of fD ≈ 40.5 kHz. The scale bar is 100 µm. The

spatially averaged grayscale pixel values (bottom) are obtained from the end of each cantilever

providing a qualitative estimate of the out-of-plane vibrational amplitude for every cantilever on the

device. (e) Modal patterns are developed by concatenating together the response at each frequency

step [26]. The rendered image of a device consisting of 200 oscillating cantilevers shows explicitly

the mapping of the device dynamics at fD ≈ 40.5 kHz to an experimentally obtained modal pattern.

For the sake of clarity of the mapping, the experimental modal pattern was specifically chosen to

consist only of the normal modes of the system and to exhibit no NPR. (f) Normalized amplitudes

of various spatially localized modes generated from a full-scale FE modal analysis [34]. Spatial

overlap of the opposing arrays’ modes is a necessary condition for NPR excitation in the system.
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FIG. 2. The frequency response and NPR excitation of (a) Array 1 and (b) Array 2 driven at

V̂ac ≈ 40 V, which is marginally above the NPR threshold voltage. 15 NPR modes are featured

within the dotted rectangles and are replotted in their respective insets. As an example of the

results obtained from the normal mode matching algorithm, we have (c) NPR mode 8 and (d) the

maximally correlated normal mode, both from Array 1, showing almost indistinguishable mode

structures. (e) Modal shapes produced by summing over frequency space using Array 1’s NPR

mode 8 and its maximally correlated normal mode, further indicating nearly identical features.

(f) NPR mode 8, (g) the maximally correlated normal mode, and (h) the modal shapes, all from

Array 2, illustrating strong similarity between the two modes. (i) The frequency deviation, ∆f ,

from the NPR frequency condition conclusively demonstrates that the 15 modes outlined above

are excited via the NPR mechanism. The error bars correspond to 95% confidence intervals. All

plots involving normalized amplitudes (Norm. Amp.) are normalized independently.
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FIG. 3. The down-chirped frequency response at V̂ac ≈ 56 V for (a) Array 1 and (b) Array 2 showing

the emergence of a NPR band spanning across all cantilever numbers (C.N.). The insets highlight 22

NPR modes. Nonlinearities start to influence the dynamics significantly at V̂ac ≈ 81 V as presented

in (c) and (d) for Array 1 and Array 2, respectively. All plots are normalized independently and

use the same normalized amplitude (N.A.) colormap.
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FIG. 4. (a) The calculated down-chirped frequency response with V̂ac = 100 V showing a NPR

band from ≈ 33 kHz to ≈ 40 kHz. The inset depicts the response of both arrays. (b) Summation of

the numerically calculated peak frequency response for beams 10 and 11. Within the NPR region,

the summed peak frequency response of beam 10, fmax
R,10, and beam 11, fmax

R,11, follow the relation

fD ≈ (fmax
R,10 + fmax

R,11)/2. The spectrograms of (c) beam 10 and (d) beam 11 computed using Welch’s

power spectral density (PSD) method along with the associated 9 point moving-average filtered

peak frequency response shown as black lines. Both plots use the same normalized PSD colormap.
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