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We experimentally investigate the lattice-induced light-shift by the electric-quadrupole (E2) and
magnetic-dipole (M1) polarizabilities and the hyperpolarizability in Sr optical lattice clocks. Precise
control of the axial as well as radial motion of atoms in a one-dimensional lattice allows observing the
E2-M1 polarizability difference. Measured polarizabilities determine an operational lattice-depth to
be 72(2)ER, where the total light shift cancels to the 10−19 level, over lattice-intensity variation
of about 30%. This operational trap depth and its allowable intensity range conveniently coincide
with experimentally feasible operating conditions for Sr optical lattice clocks.

PACS numbers: 06.30.Ft, 32.60.+i, 37.10.Jk, 42.62.Eh

Recent progress of optical clocks has pushed their
fractional uncertainty to the 10−18 level [1–4], which
opens up new applications of clocks, such as chronomet-
ric geodesy [5, 6], tests of fundamental constants [7, 8],
detection of dark matter [9] or gravitational waves [10].
Triggered by these advances, future redefinition of the
second by optical clocks [11, 12] is in scope and its pro-
cedure is being discussed [13].

Better understanding and control of perturbations lies
at the heart of continued progress of atomic clocks. Iso-
lating atoms from electro-magnetic (EM) perturbations
is of prime importance in designing ion clocks [14] where
ions are confined nearly free from EM perturbations. Op-
tical lattice clocks have shown that cancellation of trap
perturbation leads to stable and accurate clocks with un-
certainties less than 10−17 [2, 3, 12, 15], where the magic
frequency aimed to equalize polarizabilities of the clock
states so as to decouple the clock transition frequency
from inhomogeneous trap perturbations [16]. Removal of
perturbations by specifying the frequency is the essence
of the optical lattice clock, which is based on the fact
that the frequency is a precisely measurable quantity.

This magic frequency concept, however, becomes non-
trivial for achieving inaccuracy of 10−18 because of non-
negligible contribution of the higher-order light-shifts
than that given by the electric-dipole (E1) interaction.
In a standing wave of light, a quarter-wavelength spatial
mismatch between the E1 potential and the potential
induced by the electric-quadrupole (E2) and magnetic-
dipole (M1) interactions introduces an atomic-motion-
dependent light shift [17, 18]. In addition, the hyper-
polarizability effect introduces a light shift proportional
to the square of lattice intensity [16, 19]. Different spa-
tial dependence makes these light shifts difficult to elimi-
nate. An operational magic frequency [20] is proposed to
compensate the higher order shifts by the E1 light shift
and make overall light shift insensitive to lattice-intensity
variation around a “magic intensity”.

In order to find such operational condition, precise
knowledge of the higher-order polarizabilities is manda-
tory. Higher-order light shifts have been investigated the-
oretically [21, 22] and experimentally for Sr [3, 11, 23],
Yb [15, 24, 25] and Hg [26]. Recently, the hyperpolariz-
ability is measured for Yb to find the operational magic
frequency [15] with the help of a theoretical calculation
of the E2-M1 polarizability. As for Sr, in spite of signifi-
cant efforts, discrepancies between reported polarizabili-
ties are not yet solved.

In this Letter, we investigate the hyperpolarizability
and the E2-M1 polarizability for Sr atoms in a one-
dimensional (1D) lattice. From the nonlinear intensity
dependence of the light shift, we derive the hyperpolariz-
ability. The E2-M1 polarizability is evaluated by measur-
ing the light shift difference by changing the vibrational
state of atoms in the lattice. Using the obtained polariz-
abilities, we derive two distinctive operational conditions
that make the total light shift insensitive to lattice inten-
sity variation at the 10−19 level.

The lattice-induced light shift νLS is given by the light
shift difference between the ground and excited states on
the clock transition. For a 1D optical lattice as shown
in Fig. 1(a), the light shift depends on the vibrational
state nz of atoms along the z-axis, the lattice laser inten-
sity, and the detuning δL of lattice laser νL = δL + νE1

from the E1 magic frequency νE1 that makes the E1 po-
larizabilities αE1 for the clock states equal. Since the
peak intensity I0 of the lattice is proportional to the trap
depth U ≈ αE1I0 (by neglecting the higher-order effects
of less than 10−6), we rewrite the light shift formula [20]
in terms of a normalized trap depth u = U/ER with
ER = (hνL/c)

2/(2m) the lattice photon recoil energy as,

hνLS(u, δL, nz) ≈
(
∂α̃E1

∂ν δL − α̃qm
) (
nz + 1

2

)
u1/2

−
[
∂α̃E1

∂ν δL + 3
2 β̃
(
n2
z + nz + 1

2

)]
u

+ 2β̃
(
nz + 1

2

)
u3/2 − β̃ u2, (1)
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FIG. 1: (color online). (a) Experimental setup for the cavity-
enhanced 1D lattice. After loading atoms from the magneto-
optical trapping (MOT) into the lattice, we apply sideband
cooling (SBC) and Doppler cooling (DPC) on the 1S0 − 3P1

transition. (b) Energy diagram for 87Sr atoms. (c) Reduc-
tion factors ζj calculated from the radial temperature Tr are
shown by symbols, where colors indicate j as given in the
legend. The dashed lines show estimated reduction factors
ζad
j (u) assuming the lattice depth is adiabatically varied from
uref = 272 (see text). The blue and red lines in the inset
show motional sideband spectrum on the clock transition at
uref with and without SBC/DPC.

where α̃E1, α̃qm, and β̃ are the difference (denoted by
tildes) of E1 and E2-M1 polarizabilities, and hyperpolar-
izability on the clock transition. The conversion of these
polarizabilities are summarized in Supplemental Mate-
rial [27]. While the light shift model given in Ref. [20]
takes into account the anharmonicity of the lattice trap
to O(z4) in the axial coordinate expansion, we verify ne-
glecting O(z6) terms is valid for describing the light shift
with low 10−19 uncertainty for Sr [27].

The lattice intensity is non-uniform in nature, as the
spatial inhomogeneity itself is the essence of an opti-
cal trap. As the intensity critically affects the light
shift as given in Eq. (1), precise control and evalu-
ation of atomic distribution in the optical lattice is
of particular importance. We consider atomic mo-
tion in the 1D lattice potential given by U(x, y, z) ≈
−αE1I0e

−2(x2+y2)/w2

cos2 (2πz/λL), where I0, w, and

λL = c/νL are the peak intensity, the radius, and the
wavelength of the lattice laser with a Gaussian pro-
file. The axial and radial oscillation frequencies of
atoms are given by νz = 2

√
αE1I0ER/h and νr =

νzλL/(
√

2πw)(≈ νz/320 for our experiment). In con-
trast to the axial vibrational states with averaged oc-
cupation n̄z ≈ 0 that require quantum treatment, the
radial motion can be treated classically as the vibra-
tional states typically occupy n̄r = kBTr/(hνr) ≈ 110
with Tr the radial temperature and kB the Boltzmann
constant. Assuming a thermal distribution ρ(x, y) =
m(2πνr)2

2πkBTr
e−

1
2m(2πνr)2(x2+y2)/(kBTr) of atoms, the effective

laser intensity experienced by the atoms is given by

uj =

∫
ρ(x, y)

[
αE1I0e

−2(x2+y2)/w2

ER

]j
dxdy ≡ ζjuj , (2)

where we denote thermal average by bar and define a
lattice-intensity reduction factor ζj(u) ≈ 1 − jkBTr

uER
. In

the following, we evaluate the lattice light shifts of Eq. (1)

by the effective intensity uj = ζj(u)uj .

To investigate the hyperpolarizability effect, we install
a buildup cavity with a power enhancement factor of≈ 20
for the 1D optical lattice oriented vertically as shown in
Fig. 1(a). The beam radius is chosen as w ≈ 60 µm to
moderate atomic collisions and allows a maximum trap
depth of u ∼ 1200. This cavity also works as spatial filter
to define a TEM00 Gaussian mode. We use a Ti:sapphire
laser at νL ≈ 368 THz stabilized to a reference cavity that
is calibrated by a frequency comb linked to the Sr clock.
By applying a volume Bragg grating with a bandwidth of
∼ 20 GHz, we suppress amplified spontaneous emission
of the lattice laser and reduce the relevant light shift [11]
to less than 10−19.

87Sr atoms are laser-cooled to ∼ 5 µK and loaded into
the lattice with its depth of uref = 272 (urefER/kB =
45µK). This loading condition is kept constant during
measurements. A bias magnetic field of |Bbias| = 65 µT
is applied along the x-axis to define the quantization axis
and to separate the Zeeman substates. Lattice, optical
pumping and clock laser are all polarized parallel to the
bias field, while that of the cooling laser is perpendicular
to the bias field so as to be decomposed into σ± compo-
nents. Applying the π-polarized pumping laser resonant
with the 1S0 (F = 9/2) − 3P1 (F = 7/2) transition [see
Fig. 1(b)], the atoms are optically pumped to the outer-
most Zeeman substates 1S0 (F = 9/2, mF = ±9/2) used
for the clock interrogation. In the following, we discuss
the case where we take the mF = 9/2 state as the clock
state.

Simultaneously with the optical pumping, we apply
Doppler cooling (DPC) for the radial motion with the
σ+ component of the cooling laser on the 1S0 (F =
9/2, mF = 9/2) − 3P1 (F = 11/2, mF = 11/2) tran-
sition. Consequently, the radial temperature is reduced
to Tr ≈ 2 µK (correspondingly ζ1(uref) ≈ 0.96), as
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FIG. 2: (color online). Intensity-dependent light shift ∆νūLS

measured by referencing ūref = 263. The light shifts are mea-
sured at the lattice detunings δL as shown in the legend. Error
bars give 1σ statistical uncertainties for each measurement.
The solid curves fit the measurements according to Eq. (1).

measured by time-of-flight (TOF) thermometry, and the
linewidth of the blue-sideband on the clock transition is
reduced to∼ 8 kHz as shown in the inset of Fig. 1(c). The
atoms remaining in the mF = −9/2 state are heated out
of the lattice by the σ− component of the cooling laser.
Subsequently, we apply sideband cooling (SBC) to reduce
axial vibrational states to n̄z < 0.01, as measured by the
ratio of red and blue sidebands, using the σ+-polarized
cooling-laser propagating along the lattice axis.

In order to purify the mF state, we excite the atoms
to the 3P0 (mF = 9/2) state with a 22-ms-long clock π
pulse so as to resolve the Zeeman substates and to select
a single mF state. Atoms in the other Zeeman substates
remain unexcited and are subsequently blown away by
a laser pulse tuned to the 1S0 − 1P1 transition. For the
preparation of atoms in the 3P0 (mF = −9/2) state, we
apply the similar procedure with the σ− component of
the cooling laser.

Finally, in order to evaluate the lattice light shift de-
pendence on the trap depth, we adiabatically ramp up or
down the lattice depth from uref to u over 80 ms. Sym-
bols in Fig. 1(c) show reduction factors determined by
the TOF measurements, which reasonably follow those
assuming adiabatic temperature changes, i.e., ζad

j (u) =

1− 1−ζj(uref )√
u/uref

as shown by dashed lines with corresponding

colors. As the reduction factor after the adiabatic ramp
is in the range of 0.95 < ζ1(u) < 0.99 for 150 < u < 1150,

we approximate uj ≈ (ζ1u)j , which is valid within 0.2%
error. The axial vibrational number n̄z < 0.01 is mea-
sured unchanged after the adiabatic ramp.

We operate two Sr clocks, Sr1 and Sr2, to evaluate the
light shift: Sr1 measures the light shift by varying the
lattice depth u or vibrational state nz of atoms, while

Sr2 serves as a frequency anchor. Sr1 and Sr2 simulta-
neously interrogate the clock transition at ν0 ≈ 429 THz
with a common laser to cancel out the Dick effect noise
introduced by the clock laser, which improves the Allan
deviation for the light shift measurements [28].

Figure 2 shows the intensity-dependent light shift
∆νūLS = νLS(ū, δL, 0)−νLS(ūref , δL, 0) as a function of the
effective depth ū = ζ1(u)u by taking ūref = ζ1(uref)uref =
263 as a reference. We change the lattice laser frequency
νL every 30 MHz, which are measured with uncertain-
ties less than 100 kHz. The detunings δL given in the
legend are calculated after determining the E1 magic fre-
quency νE1 as described below. The hyperpolarizability
effect introduces the nonlinear dependence for higher in-
tensity, where we correct the density shift of low 10−18

by measuring the density-dependent shift [27].
All the data in Fig. 2 is fitted using the light shift

model given in Eq. (1), where we take νE1, ∂α̃E1

∂ν , and

β̃ as free parameters. As α̃qm scarcely contributes to
this fitting, we conduct another measurements to deter-
mine α̃qm and apply the results to this fitting. We re-
peat these two fittings until the fitting parameters con-
verge. Finally, the solid fitting curves determine νE1 =
368 554 465.1(1.0) MHz, (∂α̃E1/∂ν)/h = 1.735(13) ×
10−11, and β̃/h = −0.461(14) µHz.

As the light shift arising from the multipolar polariz-
ability α̃qm is sensitive to the vibrational states nz [18],
we measure the differential light shift between nz = 1
and nz = 0 vibrational states given by

h∆νvib
LS (u, δL)

= h[νLS(u, δL, 1)− νLS(u, δL, 0)]

=
(
∂α̃E1

∂ν δL − α̃qm
)
u1/2 + β̃u

(
2u1/2 − 3

)
. (3)

This eliminates the otherwise dominating contributions
from α̃E1 and β̃, and allows extracting α̃qm.

For this measurement, we excite the atoms to the nz =
0 or 1 vibrational state in the 3P0 (mF = 9/2) state
by applying a Rapid Adiabatic Passage (RAP) [29] by
frequency-sweeping the π-polarized clock laser across the
carrier and blue sideband in 6 ms. The Rabi frequency
of the clock laser is about 50 kHz (10 kHz) for the carrier
(the blue sideband). This RAP allows transferring more
than 90% of the atoms to the desired vibrational states.
The atoms remaining in the ground state are heated out
of the trap by driving the 1S0 − 1P1 transition.

Figure 3 shows the differential light shift ∆νvib
LS (ū, δL)

measured for the lattice detuning δL = 0.4 MHz. A green
line fits the measurements by taking α̃qm as a free pa-
rameter, while β̃, νE1, and ∂α̃E1/∂ν are fixed with the
values obtained with the data in Fig. 2. The updated
result of α̃qm is recursively used for deriving the hyper-
polarizability. We determine the differential multipolar
polarizability to be α̃qm/h = −0.962(40) mHz. The black
dashed line shows ∆νvib

LS (ū, 0) at the E1 magic frequency
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FIG. 3: (color online). Evaluation of the multipolar polar-
izability from the light shift difference between nz = 1 and
nz = 0 measured at δL = 0.4 MHz shown by empty circles.
Assuming β derived from Fig. 2, regions with α̃qm < 0 (> 0)
are displayed by upper red/green (lower blue) area. Empty
circles fall on the upper region, indicating α̃qm < 0. By tak-
ing α̃qm in Eq. (3) as a free parameter, the fitting determines
α̃qm/h = −0.962(40) mHz as shown by a green line.
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νE1. By setting β̃ = 0 and α̃qm = 0, we obtain red and
blue lines, which indicate that ∆νvib

LS (ū, 0) is mainly de-
termined by the multipolar polarizability for ū < 200 and
the hyperpolarizability starts to contribute for higher in-
tensity. Note that the two lines divide the plot into 3
sections indicated by different colors depending on the
signs of these polarizabilities.
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FIG. 5: (color online). Summary of differential hyperpolariz-

ability β̃ and multipolar polarizability α̃qm on the clock tran-
sition reported in previous works SYRTE [11, 23], JILA [3],
Theory 1 (error bars not available) [21], Theory 2 [22] and
this work.

The lattice-induced light shifts νLS(ū, δL, 0) predicted
by the obtained polarizabilities are shown in Fig. 4. In
addition to making the light shift insensitive to the trap
depth ū, i.e., ∂νLS

∂u |u=ūop = 0, the Sr clock transition of-
fers two distinctive operational conditions (ūop, δop

L ), as

it has the same sign for β̃ and α̃qm [27] as indicated by
the green area in Fig. 3: (i) by taking δop

L = 5.3(2) MHz
and ūop = 72(2), the total light shift can be reduced to
less than 1 × 10−19 over the trap depth 60 < u < 83
as indicated by a red line. Alternatively, (ii) by taking
δop
L = 4.1(1) MHz and ūop = 28(1), an inflection point

determined by ∂2νLS

∂u2 |u=ūop = 0 offers the light shift vari-
ation less than 1×10−19 over the trap depth 17 < u < 43
as shown by a blue line. Orange and sky-blue shaded ar-
eas indicate the uncertainties of 4× 10−19 and 2× 10−19

given by those of measured polarizabilities. The E1
magic frequency uncertainty of 1.0 MHz for the present
measurements, including the tensor-shift contribution as
discussed in the Supplemental Material [27], gives an
overall light-shift uncertainty 3 × 10−18 at ūop = 72
(hatched area) and 1 × 10−18 at ūop = 28, which can
be reduced by improving the statistics of the clock mea-
surements. For the lattice depth of 72ER and 28ER, the
off-resonant lattice-photon scattering rate [30], including
Raman scattering in the 3P0 state and Rayleigh scatter-
ing, is estimated to be 0.1 s−1 and 0.04 s−1, allowing a
sufficient clock interrogation time over multiple seconds.

Figure 5 summarizes reported polarizabilities for the
1S0 − 3P0 clock transition of Sr. The hyperpolarizabil-
ity β̃ determined in this work agrees with the previous
results [3, 23] within their uncertainties and is close to
a recent theory [22]. Our multipolar polarizability α̃qm

deviates from the previous experiment [23] that indicates
zero within the uncertainty, and from two theories [21, 22]
that give opposite signs with each other.

In summary, we have determined the differential mul-
tipolar (α̃qm) and hyper (β̃) polarizabilities for Sr op-
tical lattice clocks by precisely controlling the atomic
motion. These polarizabilities predict two distinctive
operational conditions: the lattice depth and frequency
δop
L of (72ER, 5.3 MHz) allows cancelling out the lattice

light shift and (28ER, 4.1 MHz) allows using the inflec-
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tion point, both of which coincide with typical operating
conditions for Sr clocks [2, 30]. These operational lattice
depth are conveniently described by “magic sideband fre-
quencies” of νop

z = 59(1)/
√
ζ1 kHz and 29(1)/

√
ζ1 kHz for

the axial motion, respectively, with ζ1 the intensity re-
duction factor to be measured. A narrow-line cooling [31]
allows ζ1 ≈ 0.91 or better, which well meets the predicted
lattice intensity tolerance of more than 30% around the
magic intensity. Combined with cryogenic clocks that
reduce the blackbody radiation shift [2], the clock uncer-
tainty at the level of 10−19 falls within the scope.
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