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The most neutron-rich boron isotopes 2°B and 2'B have been observed for the first time following
proton removal from *?N and *?C at energies around 230 MeV /nucleon. Both nuclei were found
to exist as resonances which were detected through their decay into B and one or two neutrons.
Two-proton removal from 22N populated a prominent resonance-like structure in 2°B at around
2.5 MeV above the one-neutron decay threshold, which is interpreted as arising from the closely
spaced 17,27 ground-state doublet predicted by the shell model. In the case of proton removal
from 22C, the B plus one- and two-neutron channels were consistent with the population of a
resonance in 2'B 2.47 £0.19 MeV above the two-neutron decay threshold, which is found to exhibit
direct two-neutron decay. The ground-state mass excesses determined for 2>>'B are found to be in
agreement with mass surface extrapolations derived within the latest atomic-mass evaluations.

PACS numbers: 21.10.Dr, 25.60.-t, 27.30.+t, 29.30.Hs

Introduction.— The advent of dedicated radioactive-
beam facilities has provided for a rather complete map-
ping of the nuclear landscape up to mass number ~ 30 [1].
As such it is now well established that the text-book shell
structure of the nucleus, that translates into an enhanced
stability for systems with “magic” numbers of protons
(Z) and/or neutrons (N) of 2, 8, 20... is modified as the
limits of particle stability, or driplines, are approached
(see, for example, Ref. [2]). Significantly, these changes
in shell structure, which have been attributed to a num-
ber of different mechanisms, including most recently and
intriguingly the effects of three-body forces [3], influence
the location of the dripline itself.

In the naive shell-model picture, neutron numbers be-
tween 8 and 20 correspond to the filling of the sd-shell
neutron single-particle orbitals (0ds /2, 151 /2, ¥0ds3/2).
Approaching the neutron dripline, the energies of these
orbitals evolve, leading for example to the disappearance
of the N = 20 magic number for Z = 10-12 (the so-
called “Island of Inversion” [4]) and to the appearance

of new shell closures at N = 14 and 16 in the oxygen
isotopes [5-7]. In this respect, the most neutron-rich
boron isotopes, which lie below doubly-magic 22240 and
straddle the neutron dripline, are of considerable interest
(Fig. 1, inset) and, significantly, are now coming within
the range of sophisticated ab intio models [8] and ap-
proaches that treat explicitly the continuum [9]. More
generally, the boron isotopic chain exhibits a number
of exotic structures: from the proton halo of B [10],
through the unbound threshold states of ®¥B [11, 12],
to the two-neutron halo of !B and the two/four neutron
halo/skin of 9B [13].

This Letter reports on the first observation of the
neutron-unbound nuclei 2°B and 2'B [14], populated
through high-energy proton removal and reconstructed
using invariant-mass spectroscopy. These measurements,
at the limits of present capabilities, provide for the first
experimental mass determinations for both isotopes. In
addition, evidence is presented showing that 2'B decays
by direct two-neutron emission. Finally, a comparison



with the predictions of shell-model calculations is dis-
cussed and provisional spin-parity assignments provided
for the levels observed.

Ezxperiment.— The experiment was performed at the
Radioactive Isotope Beam Factory (RIBF) of the RIKEN
Nishina Center, as part of an experimental campaign in-
vestigating the structure of light neutron-rich nuclei be-
yond the dripline (see, for example, Refs. [15, 16]). Sec-
ondary beams of 22N and ?2C were produced by frag-
mentation of a 345 MeV /nucleon **Ca primary beam in-
cident on a 20 mm thick beryllium target, and were sep-
arated using the BigRIPS fragment separator [17]. The
different isotopes present in the secondary beams were
identified via the measurement of their energy loss, time
of flight and magnetic rigidity, and transported to the
object point of the SAMURATI spectrometer [18], where
a 1.8 g/ecm? carbon reaction target was located. The
beam particles were tracked onto the target using two
drift chambers. The energies at target mid-point and av-
erage intensities of the 22N and ?2C beams were, respec-
tively, 225 and 233 MeV /nucleon, and 6600 and 6 pps.

The beam-velocity reaction products were detected in
the forward direction using the SAMURALI setup includ-
ing the NEBULA neutron array [19], placed some 11 m
downstream of the target. The SAMURAI superconduct-
ing dipole magnet [20], with a central field of 3 T, pro-
vided for the momentum analysis of the charged frag-
ments. The dipole gap was kept under vacuum using a
chamber equipped with thin exit windows [21] so as to re-
duce to a minimum the amount of material encountered
by both the fragments and neutrons. Drift chambers at
the entrance and exit of the magnet allowed the deter-
mination of their trajectories and magnetic rigidity [18].
This information, combined with the energy loss and time
of flight measured using a 16-element plastic hodoscope,
provided for the identification of the projectile-like frag-
ments. The neutron momenta were derived from the time
of flight, with respect to a thin plastic start detector po-
sitioned just upstream of the target, and the hit posi-
tion measured with the 120 plastic scintillator modules
(12x12x180 cm?) of the NEBULA array.

Results.— The relative energy (Eye) of the unbound
boron isotopes was reconstructed from the momenta of
the 9B fragment and neutron(s) as the invariant mass of
the '"B+4xn system minus the masses of the constituents.
It should be noted that B, owing to its extremely
weakly-bound character (two-neutron separation energy
of 0.14 + 0.39 MeV [22]), has no bound excited states
and thus FE,e reflects directly the energy above the de-
cay threshold. The spectra reconstructed using *B+n
events from reactions induced by the 22N and 2?C beams
are shown in Fig. 1, and exhibit significant differences. In
particular, while two-proton removal from 22N populates
a clear resonance-like structure around 2-3 MeV, pro-
ton removal from 22C leads to a very broad distribution
confined to energies below ~ 2.5 MeV.
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FIG. 1: Relative energy spectrum of °B+n events following
proton-removal from *?N (gray) and 22C (blue histogram).
The red line in the inset delineates the neutron dripline.

None of these features can be attributed to the re-
sponse function of the setup, as it varies smoothly with
E.ql (see, for example, Fig. 1 of Ref. [15]). In order to de-
duce the character of any resonances in 2%2'B, the spec-
tra were described using single-level R-matrix line-shapes
[23] which were used as the input for a complete simula-
tion of the setup (including the secondary-beam charac-
teristics, the reaction, and the detector resolutions and
acceptances) together with a non-resonant component.
The resolution (FWHM) in the reconstructed Fy. was
dominated by the NEBULA hit position determination
and timing resolution, and varied as ~ 0.4v/FEye] MeV.

The shape of the non-resonant continuum was deduced
for each reaction channel by mixing the measured **B-n
pairs following the procedure described in Ref. [24]. Im-
portantly, the uncorrelated distribution so obtained does
not require any a priori parameterizations and incorpo-
rates explicitly the effects of the experimental response
function. As such, it may be compared directly with the
measured distribution in order to identify features arising
from the decay of unbound states [25]. As may be seen
in Figs. 2 and 3, the non-resonant distributions for the
9B+n events from the 22N and ?2C beams clearly cannot
account for the prominent structures in either case.

Turning first to the results for two-proton removal from
22N, the inset of Fig. 2 displays the correlation function
obtained as the ratio of the data and the uncorrelated
non-resonant distribution [24]. Importantly, in addition
to displaying more clearly the presence of a peak at about
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FIG. 2: Relative-energy spectrum of 'B-+n events following
two-proton removal from 22N. The red line corresponds to the
best fit (x?/ndf = 0.33), including the non-resonant contin-
uum (dotted) and 2B resonances at 1.56, 2.50 and 4.86 MeV
(dashed lines). The inset shows the fragment-n correlation
function Cy,, (see text).

5 MeV, the region below 1 MeV shows no resonant sig-
nal. In terms of resonances in 2°B, only decays to the B
ground state by ¢ = 2 neutron emission are expected to
be observable [42]. In particular, the single-particle width
for a d-wave resonance at 2.5 MeV is, assuming a stan-
dard Woods-Saxon potential, ~ 1.3 MeV. A fit in terms
of a single prominent resonance at about 2.5 MeV and a
weaker high-lying one (plus the non-resonant continuum)
provides for a good description of the spectrum, with the
energy and width of the former F, = 2.4440.09 MeV and
I' =1.24 0.4 MeV [26]. Such a width suggests that the
spectroscopic factor for the decay to the B ground state
is large. Simple considerations, however, suggest that the
lowest-lying levels of 2°B will be a 1~,2~ doublet arising
from the coupling of a Ops/, proton with a 1s; /5 neutron,
and that the strong peak observed here may well result
from the population of both states. This point, and the
related fit shown in Fig. 2, is addressed in the discussion
below in the light of shell-model calculations.

In the case of single-proton removal from 22C (Fig. 3),
the '"B4n channel does not exhibit any clear peaks
arising from resonances in 2B, but rather a “plateau-
like” distribution, modulated by the experimental re-
sponse function, reminiscent of the direct phase-space
decay of a three-body resonance [26], in this case 2'B.
Despite the reduced two-neutron detection efficiency, the
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FIG. 3: Relative-energy spectrum of °B+4n following one-
proton removal from #*C. The red line corresponds to the
best fit (x?/ndf = 1.2), including the non-resonant continuum
(dotted) and the phase-space decay from a *'B resonance at
2.47 MeV (dashed line). The inset shows the spectrum of
19B42n events, with the best fit (red line) for a *! B resonance
at 2.4 MeV.

relative energy spectrum of 'YB+2n events, after apply-
ing cross-talk rejection conditions [27], could be recon-
structed as shown in the inset of Fig. 3. It displays clearly
resonance-like strength in the region around 2.5 MeV.
Using a simple Breit-Wigner line-shape with an energy-
dependent width, the best fit was for a 2!B resonance
at B, = 2.4+ 04 MeV with I' < 3 MeV. While the
very limited statistics precluded the construction of the
event-mixed three-body non-resonant continuum, the in-
fluence of such a distribution is expected to be less than
the quoted uncertainties.

Having established that the reactions induced by the
22C beam populate a resonance-like structure in 2'B, a
more precise energy and width may be derived from the
higher statistics two-body (1B+n) data set, as was the
case in the study of 260 [15, 28]. The YB+n spectrum
was fitted with a combination of the uncorrelated distri-
bution derived from event mixing and simulated events
arising from the decay of a resonance in 2!B. The lat-
ter was assumed to occur by three-body phase space into
YB+4n+4n, and F, was reconstructed between the frag-
ment and the neutron with the shortest time of flight (the
procedure employed in the treatment of the data). The
energy and width of the 2!B resonance are sensitive to
the location and slope, respectively, of the higher-energy
edge of the 19B+n distribution [26].



The best fit, shown in Fig. 3, is for a resonance in 2'B
with F,. = 2.47+0.19 MeV and I" < 0.6 MeV. The er-
rors include a systematic uncertainty derived from other
direct-decay modes, in which the n-n interaction modi-
fies the three-body phase space [26] following the formal-
ism of Ref. [29]. Given the very good description of the
9B+n events from the 22C beam, any contribution from
sequential decay through (and/or direct population of)
20B must be small (~ 10%) [26]. This is consistent with
the resonances found here in 2°B being at similar energy
or higher than in 2'B, providing little or no opportunity
for sequential decay to occur. As such, 2'B may be con-
sidered a new case of direct two-neutron decay.

Discussion.— In the following the present results are
discussed in the light of shell-model calculations (SM),
that were undertaken [30] in the full psd model space
(that is, comprising the Ops/2, Op1/2, Ods/2, 1s1/2 and
Ods/, single-particle orbits) for protons and neutrons
using the monopole-based universal interaction YSOX
[31], which successfully reproduces the location of the
neutron dripline for carbon and oxygen. The spuri-
ous center-of-mass contributions were removed using the
Lawson prescription. Configurations corresponding to up
to five particle-hole excitations (5fiw) were included in
the many-body space, but only small differences in the
energies were observed with the 3Aw approximation used
to design the interaction.

As alluded to above, the low-lying spectrum of 2°B
(N = 15) should exhibit a series of states arising from the
coupling of the odd valence neutron with a proton hole in
the Ops /o orbit. While the calculation of two-proton re-
moval reaction cross-sections is complex and beyond the
scope of this work, the observation that single-proton re-
moval from *2N (which exhibits a strong 1s; /o valence
neutron configuration) populates almost exclusively the
1/2% ground state of 21C [32] suggests that removal of a
second proton should favor population of a 17,27 dou-
blet, one member of which would be expected to be the
20B ground state. Indeed, as seen in Fig. 4, the SM pre-
dicts these to be the lowest-lying levels with a very small
separation. In addition, both states are predicted to ex-
hibit d-wave neutron decay branches (Table I), and the
corresponding decay widths will thus be much less than
the single-particle value of ~1.3 MeV noted earlier.

In the light of these considerations, the '"B+n rela-
tive energy spectrum was fitted assuming the structure
at around 2.5 MeV to be composed of two closely spaced
narrower d-wave resonances. As shown in Fig. 2, the in-
clusion of such a doublet, in addition to the high-lying
resonance and the non-resonant continuum, allows the
spectrum to be very well reproduced [43]. The best fit pa-
rameters for the three resonances were: F, = 1.56+£0.15,
2.50+0.09, and 4.86 +0.25 MeV; and I' < 0.5, 0.9+ 0.3,
and < 0.5 MeV. A comparison with the shell-model cal-
culations is shown in Fig. 4, whereby the energy with
respect to the first particle-emission threshold is plotted.
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FIG. 4: Left: experimental (black) and shell-model (red)
levels with respect to the 2n (**B), 1n (**B) and 2n (*'B)
thresholds. The experimental uncertainties on the energies
are shown (taking into account the particle stability of '“B),
as well as the widths of the resonances (gray boxes). Right:
one- and two-neutron separation energies for experimental
data (black), shell-model predictions (red), and mass-surface
extrapolations (green and blue points).

Given that the total binding energies are ~ 60 MeV, the
energies of the predicted ground states and lowest-lying
levels observed here are in reasonable accord.

In terms of excited states of 2°B, taking into account
the underbinding of the SM calculations (~ 1.5 MeV),
one may speculate that the weaker peak observed at
4.86 MeV (E, = 3.30 £0.29 MeV) could correspond to
the 07 and/or 35 levels (Fig. 4), which are predicted to
exhibit significant spectroscopic strength for neutron de-
cay to B ground state (Table I). It is interesting to note
that the very weakly-bound character of 1B means that
all the 2°B levels observed here are energetically permit-
ted to decay via 3n emission to 'B.

Turning to 2'B (N = 16), the SM predicts a 3/2~
ground state formed by the Ops/o proton hole and ex-
pected to be the only state populated with any observable
strength following proton removal from 2?C. Preliminary
estimates made using the Gamow Shell Model [9] suggest
a 2B ground state (unbound by about 1.7 MeV) with a
width of I' ~ 130 keV [33], consistent with our upper
limit of 600 keV.

In terms of the N = 16 shell closure, the SM predicts
a rather high-lying first excited state (1/27) in !B, al-



TABLE I: SM predictions for the spectroscopic factors for the
decay of 2°B levels (Fig. 4) to the B ground state.

E (MeV) JT l, 75
313 27 0 0.21

2 0.16
3.19 17 0 0.09

2 0.52
3.55 a7 2 0.30
3.93 1 0 0.07

2 0.17
4.93 25 2 0.05
5.88 37 2 0.10
5.96 0y 2 0.43
6.46 35 2 0.70

TABLE II: Experimental mass excesses (MeV) of the heaviest
boron isotopes (present work and Ref. [22]) compared to the
most recent atomic-mass evaluations [36, 37].

Isotope  AMEI2 [37] AMEI16 [36] Experiment
B 58.78+0.40 59.77+0.53 59.77+0.35
208 67.1340.70 68.45-+0.80 69.40-+0.38
2ig 75.72+0.90 77.33+0.90 78.38-+0.40

though with an excitation energy E, = 3.6 MeV lower
than found experimentally in 22O (4.7 MeV [6, 34]) and
2N (4.1 MeV [44]), and than predicted by these calcu-
lations in 22C (5.0 MeV). Given that the SM predicts
the first excited state of 2B to have a strength some ten
times less than the ground state in proton removal from
22, its non-observation here is not surprising.

Assuming that the lowest-lying levels observed here
correspond to the ground states of 2%2'B, the resonance
energies, in combination with the 19B binding energy [22],
may be used to determine the one- and two-neutron sep-
aration energies. These are plotted in Fig. 4, whereby
the experimental results are compared with those de-
rived from mass-surface extrapolations [36, 37]. The cor-
responding mass excesses are tabulated in Table II. As
can be seen, the mass-surface extrapolations from the
2012 mass evaluation overbind '29:21B by ~ 1-3 MeV.
However, the more recent 2016 evaluation, which bene-
fits from the 9B, 22C and 23N mass measurements [22],
provides estimates for the mass excesses of 2%21B that
are compatible with the present work. In this spirit, the
present 20-2'B masses will permit mass-surface extrapo-
lations in this region to be made with improved precision
and further from stability.

Conclusions.— In summary, using high-energy proton
removal coupled with invariant-mass spectroscopy, the
most neutron-rich boron isotopes to date have been ob-
served for the first time. In the case of 2°B a prominent
resonance-like structure was observed at about 2.5 MeV
above the one-neutron decay threshold that, guided by
theoretical considerations, has been identified as the

17,27 ground-state doublet, with energies F, = 1.56 +
0.15 and 2.50+0.09 MeV. A weaker higher-lying peak was
also observed at 4.86+0.25 MeV (E, = 3.30£0.29 MeV).
The data acquired for 2'B were consistent with the pop-
ulation of a resonance 2.47 + 0.19 MeV above the two-
neutron emission threshold, assigned to be the expected
3/27 ground state. These results allowed the first de-
terminations to be made of the ground-state masses of
20.21B which are in agreement with the extrapolations
of the most recent atomic-mass evaluations. In addition,
21B was found to exhibit direct two-neutron decay.

The identification and first spectroscopy of 202! B pre-
sented here opens the way to the exploration of structure
and correlations beyond the dripline below 2*0O. In par-
ticular, improvements in secondary-beam intensities and
neutron detection should permit n-n correlations in the
decay of 2B to be investigated [29, 38, 39] and its first
excited state to be located. This, coupled with work un-
derway to investigate the excited states of 22C, including
the all important 27 level [35, 40, 41], will provide direct
insights into the N = 16 shell closure beyond the neutron
dripline as well as stringent tests of a new generation of
ab initio and related theoretical models, including those
incorporating explicitly the continuum.
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