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Abstract: Composites of flexible and rigid polymers are ubiquitous in biology and industry alike, yet the 
physical principles determining their mechanical properties are far from understood. Here, we couple 
force spectroscopy with large-scale Brownian Dynamics simulations to elucidate the unique viscoelastic 
properties of custom-engineered blends of entangled flexible DNA molecules and semiflexible actin 
filaments. We show that composites exhibit enhanced stress-stiffening and prolonged mechano-memory 
compared to systems of actin or DNA alone, and that these nonlinear features display a surprising non-
monotonic dependence on the fraction of actin in the composite. Simulations reveal that these 
counterintuitive results arise from synergistic microscale interactions between the two biopolymers. 
Namely, DNA entropically drives actin filaments to form bundles that stiffen the network but reduce the 
entanglement density, while a uniform well-connected actin network is required to reinforce the DNA 
network against yielding and flow. The competition between bundling and connectivity triggers an 
unexpected stress response that leads equal mass DNA-actin composites to exhibit the most pronounced 
stress-stiffening and the most long-lived entanglements.  

 

Mixing polymers with distinct structural features and stiffnesses endows composite materials with unique 
macroscopic properties such as high strength and resilience coupled with low weight and malleability [1-
4]. These versatile materials, ranging from carbon nanotube-polymer nanocomposites and liquid crystals 
to cytoskeleton and mucus, have numerous applications from tissue engineering to high-performance 
energy-storage [2,5-12]. Compared to single-constituent materials, polymer composites offer a wider 
dynamic range and increased control over mechanical properties by tuning the relative concentrations and 
properties of the different species. Importantly, the unique mechanics that emerge in composites often 
cannot be deduced from those of the corresponding single-component systems [3,13-17]. However, the 
physical principles that couple structural interactions to mechanics in composites remain elusive. 

Over the past two decades, DNA and actin have been extensively studied as model polymer systems [18-
22]. While the contour lengths of each biopolymer can be comparable (L≈10–50 μm), actin is much 
stiffer than DNA with a persistence length lp of ~10 μm compared to lp≈50 nm for DNA. When 
sufficiently long, both polymers form entangled networks over similar concentrations (c≈0.1-2.5 mg/ml), 
with actin forming nematic domains above 2.5 mg/ml [18]. Despite their wide use as model systems, very 
few studies have examined composites of actin and DNA, focusing solely on steady-state structure at 
concentrations above the nematic crossover or under microscale confinement [23-25]. These studies 
reported large-scale phase separation such that DNA and actin polymers were rarely interacting. Co-
entangled systems of DNA and actin have yet to be investigated.  

Here, we directly address these open problems by using optical tweezers microrheology and Brownian 
Dynamics (BD) simulations to characterize the microscale structure, nonlinear mechanical response, and 
relaxation dynamics of custom-engineered composites of entangled DNA and actin. We reveal a 
surprising non-monotonic dependence of stiffening and mechano-memory on composite composition. BD 
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simulations show that these emergent properties arise from a competition between DNA-driven actin 
bundling and actin network connectivity to scaffold DNA. 

The dynamics of entangled polymers can often be described by reptation theory [26,27] which models 
each polymer as being confined to a tube of diameter a formed by the surrounding polymers, restricting 
diffusion to a direction parallel to the polymer contour. This confinement arises at times longer than the 
entanglement time τe (i.e the time needed for polymer segments to reach the tube edge). To relax induced 
strain, polymers reptate out of deformed tubes over the disengagement time τD. Theoretical predictions 
for these length and timescales are highly dependent on whether the polymer is considered a flexible 
random coil (L>>lp) or an extended semiflexible polymer (L~lp) (see SM) [27-30].  

We have designed entangled DNA-actin composites with varying mass fractions of actin ΦA=cA/(cA+cD) 
and a fixed concentration c=cA+cD=0.8 mg/ml (Fig 1, SM) [31], judiciously chosen such that a and τe for 
actin-only and DNA-only systems are nearly identical (a≈0.76 μm, τe≈0.04 s) [27-30,32-34]. Polymer 
lengths were chosen such that the primitive path length (or tube length) of flexible DNA, L0,D≈5 μm 
[27,32], is comparable to the extended actin contour length (LA≈7 μm) [35]. Thus, as we vary ΦA we are 
only changing the mass fraction of flexible and semiflexible polymers while fixing the other system 
parameters (see SM).  

For microrheology measurements, a microsphere is optically displaced 30 μm through the composite at 
20 μm/s while the force the composite exerts on the bead during and after strain is measured (Figs 1, S1) 
[36-38]. During strain, force curves for all networks exhibit three distinct regimes: an initial steep (elastic) 
increase until t1≈0.04 s; a shallower power-law rise ݔ~ܨఈభ; and a largely viscous regime with ݔ~ܨఈమ, 
where α2 approaches zero (Fig 2A). However, there is a clear distinction between composites (0<ΦA<1) 
and actin-only (ΦA=1) or DNA-only (ΦA=0) networks. Upon normalization of each curve by its terminal 
value Ft, all composites collapse to a universal curve that exhibits more sustained elasticity than single-
component networks, with α1≈0.46 and α2≈0.18 versus α1≈0.35 and α2≈0 for single-component systems 
(Fig 2A,C). To further quantify the time-dependent elasticity or stiffness, we compute the effective 
differential modulus K=dF/dx. As shown (Fig 2B), all composites stress-stiffen (dK/dx>0) from an initial 
value K0 to a maximum value Kmax, followed by stress-softening (dK/dx<0) and yielding. However, the 
degree of stiffening (Kmax/K0) and the lengthscale over which stiffening occurs, xstiff=x(Kmax), display a 
non-monotonic dependence on ΦA (Fig 2B,D). Composites exhibit increased and prolonged stiffening 
compared to single-component systems, with a maximum in Kmax/K0 and xstiff observed in equal mass 
composites (ΦA=0.5). While the timescale to yield to the viscous regime, ty (i.e. t at which K=K0/2e 
[36,39]), is close to the first crossover time t1 for all systems, ty reaches a maximum at ΦA=0.5 (Fig 2E). 
Finally, the terminal K value, which quantifies the sustained stiffness, displays the signature non-
monotonicity, with ΦA=0.5 exhibiting the most pronounced terminal elasticity (Fig 2E).  

Following strain, force relaxation curves for composites also exhibit three distinct regimes with similar 
crossover times to those during strain: an initial stalling period with minimal force dissipation until 
t1≈0.04 s, power-law relaxation with a ΦA-independent scaling exponent β1≈2/3 until t2≈0.5 s, followed by 
more shallow decay with scaling β2≈1/3 (Fig 3). Conversely, ΦA=0 and ΦA=1 systems undergo fast 
relaxation (minimal stalling) until t1≈0.04 s, followed by a single decay regime with polymer-specific 
exponents β2A≈0.36 and β2D≈0.15. These emergent properties suggest that synergistic interactions 
between DNA and actin confer composites with increased mechano-memory and more ordered 
mechanical response [40-42].  
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The crossover time t1, mediating the onset of more viscous response and relaxation during and following 
strain, is remarkably close to the entanglement time τe≈0.04 s. For t<τe, entangled polymers are predicted 
to relax primarily via bending and stretching modes, whereas for t>τe reptation is the principal 
mechanism. The force-stalling phenomenon, coupled with increased stiffening and reduced yielding 
during strain, all of which occur at t<τe, suggest that bending/stretching is suppressed in composites. The 
scaling of the second decay phase for composites is similar to that for the actin network, indicating that 
long-time relaxation is dominated by the slower reptation of actin compared to DNA. While the second 
crossover time t2 is shorter than the predicted τD for DNA, nonlinear strains have been predicted to dilate 
entanglement tubes and concomitantly reduce τD [36,37,43-45]. Likewise, during strain composites 
transition to a primarily viscous regime at ~t2, (Fig 2A,C), as much of the stress has been relieved via 
DNA reptation.  

To determine the extent to which our results are distinct to the nonlinear regime, we compute the linear 
elastic modulus G'(ω) by evaluating the thermal fluctuations of the trapped bead (see SM, [14,46-50]). 
All networks exhibit a rise in G'(ω) over a range of ~13–150 rad/s, comparable to the timescales t2 and t1; 
and G'(ω) for ΦA=0.25 and ΦA=0.75 are similar to that of DNA-only and actin-only networks, 
respectively (Fig S2). However, G'(ω) for ΦA=0.5 exhibits a larger increase with ω, which occurs at 
higher ω (shorter t) than the other networks. Further, at high ω, G'(ω) is greatest for ΦA=0.5 indicating 
that this system has the most pronounced elastic response to fast strains, in line with our nonlinear regime 
results (Fig S2).  

To shed light on the structural interactions responsible for the emergent stiffening and mechano-memory, 
we perform large-scale BD simulations (see SM) [51,52]. As shown (Figs 1, S3), DNA and actin form 
networks that span the composite. However, zooming in on simulation snapshots shows that ΦA=1 
networks are formed entirely from entanglements between individual filaments, whereas actin in 
composites form multi-filament bundles, resulting in less dense networks of bundles (Fig 4A).  

To quantify the spatial organization of actin and DNA, we compute the radial distribution function ga-

b(r)=<δ(|ra
i-rb

j|-r)>/g0, where ra
i denotes the position of the ith bead belonging to species a and 

g0=4ρπr2dr is the expected distribution in uniform systems. Comparing ga-b for actin-actin (gA-A), actin-
DNA (gA-D) and DNA-DNA (gD-D), reveals that actin self-associates in the presence of DNA, displayed as 
peaks in gA-A curves at small r (Figs 4B, S4). These peaks are non-existent in the other distributions, 
showing that individual DNA polymers remain uniformly distributed, and DNA and actin are well-mixed 
among each other. We also compute the nematic correlation function Πa-b(r) (SM, [25,53,54]), which 
displays very similar dependence on ΦA and r as gA-A(r), demonstrating that actin self-association is 
nematic bundling rather than randomly-oriented clustering (Fig 4C). 

To quantify the lengthscales of actin bundling we compute: (i) the distance r at which gA-A achieves a 
maximum, ra(ΦA), quantifying spacing between filaments in a bundle; and (ii) the decay distance of ΠA-

A(r), rb(ΦA), quantifying bundle thickness (Table S1, Fig 4). We find that bundles become denser and 
thinner as DNA concentration increases, as both ra and rb decrease with decreasing ΦA. This effect likely 
arises from the well-known entropic depletion interaction in which DNA drives actin together to 
maximize its available volume and entropy [55-57]. We also find that rb/ra reaches a maximum at ΦA=0.5, 
indicating that there are more filaments per bundle compared to composites with less or more DNA. 
While ΦA=0.5 bundles are ~30% less dense than for ΦA=0.25, allowing them to more efficiently form 
connections with other bundles, they are comprised of ~20% more filaments (rb/ra(0.5)=1.73 vs 
rb/ra(0.25)=1.43), enhancing stiffness. Importantly, this bundling is on a very different scale than 
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previously reported nematic phases in DNA-actin composites [24,25]. In these studies, DNA and actin 
phase-separated, forming actin-only and DNA-only regions that spanned >50 μm [24]. Here, DNA and 
actin remain co-entangled and bundles are on the scale of a few filaments (rb/ra<2). It is noteworthy that 
such microscale rearrangements and interactions can lead to such distinct changes to viscoelastic 
properties. The small scale of bundling also limits the ability of fluorescence confocal microscopy 
methods used in previous studies [24,25] to accurately capture the morphological changes.  

These results suggest that our observed non-monotonic trends (Figs 2,3) arise from a competition between 
increasing bundle stiffness and maintaining actin network connectivity. While more tightly packed 
bundles produce stiffer actin fibers to reinforce the DNA, the spacing between bundles also increases 
producing fewer actin network connections with which DNA can entangle. To quantify actin connectivity 
in composites and its competition with bundling, we first compare ra values to the theoretical spacing 
between monomers in a purely uniform system, lf=ρ-1/3 (ρ is monomer density, see SM). When ra<lf, as 
for ΦA=0.25, connections between non-aligned actin filaments (i.e. entanglements) are destroyed in favor 
of bundling, while for ra>lf  (as for ΦA=0.75), connections are largely preserved but bundling is weak. 
Notably, for ΦA=0.5, ra≈lf, demonstrating a critical point in which bundling and connectivity are optimally 
balanced. We also evaluate the probability Pbond of any two actin filaments to be in contact, using both ra 
and lf as threshold spacings for contact (Fig S6). As shown, Pbond(lf) decreases with increasing ΦA, 
demonstrating that the degree of bundling decreases, whereas Pbond(ra) increases, showing that more 
bundles are connected to one another. Without bundle connectivity, only filaments within the same 
bundle would contribute to Pbond(ra), whereas if bundles are connected, filaments in different bundles 
would also contribute, increasing Pbond. At ΦA=0.5, Pbond(ra)≈Pbond(lf), demonstrating once again the 
unique criticality of this composition.  

To further quantify network structure, we evaluate the density fluctuations δρ/ρ in actin networks and the 
entropy of mixing ΔS/Smax (SM, Figs 4, S6) [58]. We find that both quantities decrease as ΦA increases, 
indicating that at higher ΦA, actin provides a more uniform, connected scaffold (suppressing spatial 
density fluctuations). For δρ/ρ >1, as for ΦA=0.25, fluctuations outweigh uniformity as actin bundles form 
large holes in the scaffold, while for δρ/ρ <1 (seen in ΦA=0.75), uniformity dominates such that bundling 
cannot appreciably increase network stiffness. Uniquely, for ΦA=0.5, δρ/ρ ≈1 (Fig 4), corroborating that a 
careful balance between bundling and uniformity is achieved. 

To demonstrate that these synergistic DNA-actin interactions can lead to the experimentally observed 
emergent viscoelasticity, we quantify the bulk equilibrium stress relaxation G(t) (SM) [59-61]. We find 
similar scaling exponents to experimental relaxation values for ΦA=1 (αA≈1/3) and ΦA=0 (αD≈0.15); and 
at short times G(t) for composites (0<ΦA<1) display α≈2/3 scaling, quite close to the experimental α1 (Fig 
4D, S7). At t1≈0.04 s, all networks display a crossover to a slow-decay regime, with nearly all curves 
displaying similar scaling (α≈1/3), aligning with our experimental α2. The notable exception is ΦA=0.5, 
which exhibits a long-lived entanglement plateau and transitions to terminal behavior at shorter times than 
the other networks. Our experiments exhibit a similar phenomenon in which the terminal force relaxation 
value and the high-ω G'(ω) plateau are highest for ΦA=0.5 (Figs 3A, S2). The time at which G'(ω) 
transitions to maximal values is also shorter than other networks. These collective results further 
demonstrate the increased rigidity of this composite compared to other ΦA values. 

While we find excellent agreement between our experimental and theoretical scaling exponents and 
crossover time t1, the timescales over which each regime occurs is different. For experimental relaxations, 
t1 is the crossover from force-stalling to α1 decay, whereas in simulations, it is the crossover from α1 to α2 
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decay. However, we do not expect G(t) to be identical to experimental relaxation curves as our 
experiments measure stress relaxation following nonlinear perturbation, whereas G(t) measures the stress 
dissipation from thermal deformations. Comparing G(t) and G'(ω) is also not straightforward as 
experimental G'(ω) measurements are performed at the microscale while G(t) quantifies the bulk 
response; and previous studies of blends of stiff and flexible polymers have shown that the elastic 
response is highly dependent on the lengthscale examined [14,17]. Nonetheless, similarities between 
simulated and experimental curves corroborate that our simulations can capture the dynamics of our 
experimental system.  

In summary, we provide new general evidence for synergistic interactions between stiff and flexible 
polymers that can result in enhanced stress-stiffening, robust entanglements, and mechano-memory that 
well exceed that of the corresponding single-component systems. We show that flexible DNA polymers 
cause semiflexible actin filaments to bundle via entropic forces, which increases the ability of the 
composite to stiffen in response to strain and resist yielding and relaxation. However, entropic bundling 
eventually comes at a cost of destroying actin network connectivity required to reinforce the flexible 
DNA network against flow and allow for long-lived entanglements. Thus, the non-monotonic viscoelastic 
response observed in experiments and simulations is a direct consequence of the balance between forming 
tighter bundles and maintaining network connectivity. We expect our collective results to be generally 
applicable to any composite in which both flexible and stiff polymers are in the entangled regime. If the 
concentration exceeds that of the nematic crossover for either species then largescale phase separation is 
expected [24,25]. If the concentration is below that of the entanglement threshold for the (i) stiff or (ii) 
flexible species then (i) any degree of bundling would destroy connectivity [15,17] and (ii) the flexible 
network could no longer contribute to bearing mechanical stresses, both critical to the emergent 
viscoelastic behavior we report. While substantial changes in viscoelasticity in composites are often 
attributed to largescale phase separation and structural rearrangement, we have shown that molecular-
level interactions and entanglements between two distinct polymers can give rise to emergent dynamics. 
Our collective results reveal new physical phenomena of composite systems, demonstrate the complex 
interplay between microscale polymer interactions and material properties, and provide a robust 
biopolymer platform for investigating the physics of polymer composites.  

This research was funded by an AFOSR Biomaterials Award (No. FA9550-17-1-0249) and an NSF 
CAREER Award (No. 1255446) awarded to RMR-A. 
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Figure 1. Optical tweezers microrheology of entangled DNA-actin composites with varying mass 
fractions of actin, ΦA. (Top) Snapshots from BD simulations of entangled composites of actin (magenta) 
and DNA (green) with varying ΦA. Each snapshot represents (2.5 μm)2 [(100σ)2, see SM]. Colors of 
enclosing boxes signify ΦA, listed in legend. (Bottom) An optically trapped microsphere (4.5-μm 
diameter) embedded in the composite is displaced 30 μm (grey) at 20 μm/s. The force is measured before 
(equilibrium E, 5 s), during (strain S, 1.5 s) and after (relaxation R, 20 s) bead displacement. Each force 
curve corresponds to a different ΦA.  
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Figure 2. Equal mass actin-DNA composites display the most pronounced stress-stiffening and 
resistance to yielding. (A) Force F as a function of bead displacement x and time t, normalized by the 
terminal value Ft, for DNA-actin composites of varying ΦA. Dashed lines denote times (t1, t2) at which 
force curves crossover to weaker power-law rise. Inset: Zoom-in of force near the end of strain. Scale bars 
show average scaling exponents for composites (α1≈0.46, α2≈0.18) and single-component networks 
(α1≈0.35, α2≈0). (B) Effective differential modulus K=dF/dx, normalized by the initial value K0. (C) 
Dependence of scaling exponents α1 (black) and α2 (grey) on ΦA. (D) Dependence of stress-stiffening on 
ΦA. The maximum differential modulus Kmax, normalized by K0, quantifies the degree to which 
composites stress-stiffen (black). The bead displacement at which Kmax is reached, xstiff, quantifies the 
lengthscale over which composites stiffen (grey). (E) Dependence of yielding on ΦA. The terminal K 
value, Kt, quantifies the amount of stiffness composites retain at the end of the strain (black). The yield 
time, ty, quantifies the time over which composites lose initial elasticity and yield to a viscous regime 
(grey).  
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Figure 3: Composites display universal force-stalling and power-law force relaxation. (A) 
Relaxation of force F as a function of time t following strain, normalized by the corresponding force at 
t=0, F0, for networks of varying ΦA. Black lines indicate power laws, F~ିݐఉ , with exponents listed. 
Composites (0<ΦA<1) display an initial stalling period until t1≈0.04 s (dashed line), after which power-
law relaxation ensues with α1≈2/3. For t2>0.5 s (dashed line), relaxation displays a weaker decay with α2 

≈1/3. Conversely, single-component networks exhibit near immediate relaxation (t<0.02 s), with an initial 
fast decay until t1≈0.04 s followed by single power-law decays. Inset: Un-normalized force at the end of 
relaxation showing that ΦA=0.5 composites retain the most force. (B) Stalling time (black), determined as 
the time at which F drops to 0.9F0, and terminal force Ft at the end of relaxation (grey), as a function of 
ΦA. (C) Scaling exponents as a function of ΦA with dashed lines at 1/3 and 2/3.  
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Figure 4: BD simulations shows that actin bundling causes non-monotonic composite stiffening. (A) 
Simulation snapshots showing a trace amount of actin in ΦA=0.25 (left) and ΦA=1 (right) composites. 
Scale bars are 20σ=500 nm. (B) Radial distribution functions for actin-actin gA-A(r) and actin-DNA gA-D(r) 
(inset), as a function of distance r (normalized by box size L) for varying ΦA. Values of ra quantify the 
distance between actin filaments in bundles. (C) Nematic order parameter for actin, ΠA-A(r). Inset: Density 
fluctuations δρ/ρ decrease with increasing ΦA, reaching ~1 for ΦA=0.5. Values of rb quantify the thickness 
of bundles. (D) Stress relaxation function G(t) showing two distinct power-law decays with crossover at 
t1≈0.04 s. The case ΦA=0.5 uniquely exhibits a distinct plateau and larger terminal G(t) values. 
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