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We present measurements of quantized conductance in electrostatically induced quantum point
contacts in bilayer graphene. The application of a perpendicular magnetic field leads to an intricate
pattern of lifted and restored degeneracies with increasing field: at zero magnetic field the degeneracy
of quantized one-dimensional subbands is four, because of a twofold spin and a twofold valley
degeneracy. By switching on the magnetic field, the valley degeneracy is lifted. Due to the Berry
curvature states from different valleys split linearly in magnetic field. In the quantum Hall regime
fourfold degenerate conductance plateaus reemerge. During the adiabatic transition to the quantum
Hall regime, levels from one valley shift by two in quantum number with respect to the other valley,
forming an interweaving pattern that can be reproduced by numerical calculations.

Conductance quantization in one-dimensional channels
is among the cornerstones of mesoscopic quantum de-
vices. It has been observed in a large variety of material
systems, such as n-type GaAs [1, 2], p-type GaAs [3, 4],
SiGe [5], GaN [6], InSb [7], AlAs [8] and Ge [9]. Typi-
cally spin degeneracy leads to quantization in multiples
of 2 e2/h. In single and bilayer graphene both steps of
2 e2/h and 4 e2/h have been reported [10–15], although
a fourfold degeneracy is expected due to the additional
valley degree of freedom. Here we present data for three
quantum point contacts (QPCs) which display (approx-
imately) fourfold degenerate modes both at zero mag-
netic field and in the quantum Hall regime, and twofold
degenerate modes in the transition region. The Berry
curvature in gapped bilayer graphene induces an orbital
magnetic moment for the states selected by the quantum
point contact [16]. The valleys therefore split linearly in
a weak magnetic field and conductance steps of 2e2/h
emerge. The adiabatic evolution of conduction steps to
the quantum Hall regime reveals a universal level cross-
ing pattern: state energies in one valley shift by two with
respect to those of the other valley due to the chirality of
the effective low-energy Hamiltonian in the K+ and K−
valley, a general feature of Dirac particles in even spatial
dimensions [17]. Related topological effects involving the
valley degree of freedom have recently been discussed in
bilayer [16, 18–22] and trilayer graphene [23] . The lifting
and restoring of level degeneracies is explained in detail
by two complementary theoretical models. These results
are the basis for a detailed understanding of conductance
quantization and tunneling barriers in bilayer graphene,
enabling high-quality quantum devices.

The device geometry is similar to the one employed in
our demonstration of full pinch-off of bilayer graphene
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quantum point contacts [15]. A bilayer graphene (BLG)
flake was encapsulated between hexagonal boron nitride
layers (hBN), using the van der Waals pick-up technique
[24], and deposited onto a graphite flake (see Figure
1a for a schematic of the final device geometry). The
graphene layer was contacted with Cr/Au contacts and a
top gate pattern, consisting of six pairs of split gates (SG)
with spacings ranging from 50 nm to 180 nm, was evap-
orated. On top of the device a layer of Al2O3 and finally
the channel gates (CH) were deposited. An atomic force
microscopy image of the sample, recorded prior to the
deposition of the channel gates, is shown in Fig. 1b. In
the present manuscript, we show data from three QPCs:
QPC S (50 nm split gate separation), QPC M (80 nm)
and QPC L (180 nm).

By applying voltages of opposite sign to the graphite
back gate and the split gates, a displacement field be-
tween the two graphene layers is established, leading to
the opening of a band gap [25]. In Ref. 15 we demon-
strated that this suppresses transport below the split
gates. Hence a constriction is formed, in which the charge
carrier density can be tuned by the channel gate voltage.
During the measurements, a large displacement field was
applied beneath a single pair of split gates and the chan-
nel gate voltage was used to adjust the density and the
displacement field E in the channel. The measurements
were performed at T = 1.7 K.

The conductance of QPC M (80 nm wide) as a func-
tion of channel gate voltage is shown in Fig. 1c for vari-
ous combinations of the split and back gate voltage. For
each curve, a series resistance was subtracted which cor-
responds to the resistance measured at the same back
gate voltage with uniform charge carrier density through-
out the sample. The traces show several plateaus with a
typical step size of ∆G = 4 e2/h, in particular for large
quantum numbers, as previously reported in Ref. 15.
Similar results have been found for QPC L and L’ (180
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FIG. 1. (a) Schematic of the device consisting of bilayer
graphene encapsulated in hBN on top of a graphite back gate.
On top of the device split gates were evaporated. A layer
of Al2O3 serves to separate the split gates from the channel
gate. (b) Atomic force microscopy image of the device. Green
dashed lines denote the edges of the bilayer graphene flake.
Contacts are labeled S and D. Six pairs of split gates are situ-
ated between the contacts. (c) Conductance as a function of
channel gate voltage for various combinations of the split gate
and back gate voltage, showing conductance plateaus with a
step size of ∆G = 4e2/h for large quantum numbers.

nm wide) with a smaller spacing in gate voltage be-
tween the plateaus, in agreement with the wider chan-
nel, and for QPC S (50 nm wide) with a larger spacing.
For the employed range of gate voltages, the displace-
ment field E does not significantly change the observed
plateau sequence. Below G = 24 e2/h we observe several
kinks which cannot be identified as plateaus and some
plateaus occurring below the expected conductance val-
ues. Reduced screening of the disorder potential in this
low density regime might play a role. Simulations of
the electrostatic potential [15] show that in this regime
the confinement potential is shallow. From a theoretical
perspective the non-monotonicity of the dispersion re-
lation, which becomes more pronounced for larger gaps
and wider channels, can lead to additional degeneracies
for low mode numbers, possibly explaining the absence
of a plateau at G = 4 e2/h [26].

The conductance of QPC M as a function of chan-
nel gate voltage for several magnetic field strengths (Fig-
ure 2a) features a plateau sequence at B = 0 T described
by G = 4Ne2/h with integer N . Increasing the mag-
netic field to a value of B = 2.2 T changes the plateau

sequence to G = 2Ne2/h. At B = 5 T the conven-
tional sequence of Landau levels of BLG is observed, with
G = 4Ne2/h. In the lowest two Landau levels a lift-
ing of the fourfold degeneracy can be observed. Around
B = 1.5 T, during the transition to the Hall regime, the
fourfold degeneracy is restored: the sequence is shifted
to G = (4N + 2)e2/h. This is most clearly visible for the
modes for which G ≥ 22 e2/h.

To further investigate this transition we inspect the
transconductance as a function of channel gate voltage
and magnetic field (see Fig. 2b). Mode transitions show
up as dark lines, which start out vertically in low mag-
netic fields, but bend toward more positive gate voltages
above B = 1 T. This phenomenon, known as magnetic
depopulation and observed for instance in high quality
GaAs [27], is due to the transition from electrostatic con-
finement to magnetic confinement. What is unusual how-
ever, is the pattern of mode splittings and mode cross-
ings.

The same pattern can be observed for the wider QPCs
(Fig. 2c), where the fourfold degeneracy is already re-
stored at 2 T because of the wider channel. Although
the lowest modes are hard to resolve, a robust pattern of
mode crossings can be observed for many higher modes.
Furthermore, we measured similar patterns for various
displacement fields inside the channel and also for a p-
doped channel (see Appendices J and K).

To elucidate the evolution of the conductance steps
with magnetic field, we simulate the experimental setup
using two independent, complementary theoretical ap-
proaches, k · p theory [25] and tight-binding calcula-
tions [28] (see the supplement for technical details). Both
approaches agree well with each other and the experi-
ment, highlighting the robustness of the observed fea-
tures and the validity of our two modelling approaches.
They reproduce and explain the observed low-field split-
ting (Fig. 3) and the level crossing pattern (Fig. 4).

Here, we use soft electrostatic confinement provided by
a transverse electric field both at B = 0 and at a finite
magnetic field. The obtained magnetic field dependence
of the miniband edges represents the closest spectral ana-
logue of the experimentally measured transconductance
spectrum. We chose the potential landscape for k · p
theory by matching the mode spacing extracted from fi-
nite bias measurements of QPC M at B = 0 T (see Ap-
pendix L). Note that in the experiment the channel gate
voltage influences not only the Fermi level, but also the
shape of the confinement potential and the size of the dis-
placement field inside the channel. To obtain one to one
agreement between the calculation and the experimental
results, a self-consistent potential would be required.

At zero magnetic field, we find spin- and valley-
degenerate spectra (Fig. 3a) in agreement with the ex-
perimentally observed step size of ∆G = 4 e2/h (Fig. 2a).
The subband edges (for small mode numbers) are situ-
ated at finite momenta, reminiscent of the three mini-
valleys in gapped BLG in the presence of trigonal warp-
ing [25, 29]. When switching on a magnetic field, the
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FIG. 2. (a) Conductance of QPC M as a function of VCH for various magnetic field strengths. Several quantization sequences
are observed. (b) Transconductance of QPC M as a function VCH and magnetic field. A pattern of mode splittings (see green
and blue dotted modes) is observed. Numbers in purple indicate the conductance values in the quantum Hall regime. (c)
Transconductance of QPC L as a function VCH and magnetic field. A similar pattern of mode crossings is observed in a smaller
magnetic field range than for QPC M.

interlayer asymmetry leads to valley splitting of electron
subbands, clearly seen in the band structure computed
for B = 2.2 T (Fig. 3b, blue and magenta subbands).
This lifting of valley degeneracy is in agreement with the
measured step size of ∆G = 2 e2/h (see Fig. 2a). The
valley splitting is linear in B for small magnetic fields
(see Fig. 3b). This is related to the fact that the zero-
field states of trigonally warped, gapped BLG [25, 29]
carry non-trivial Berry curvature and, consequently, a fi-
nite magnetic moment, Mz. We label the zero-field states
|nξ〉, with transverse quantum number n = 0, 1, . . . in
the Kξ (ξ = ±) valley. The Berry-curvature can be seen
in the inset of Fig. 3b and in Appendix B). For larger
displacement fields, the Berry curvature becomes more
spread out in k-space around the K-points, affecting sev-
eral of the lowest modes.

In the high magnetic field regime, where the magnetic
length is smaller than the channel width, the subbands
in the channel become drifting states in the BLG Landau
levels (LLs) |Nξ〉, where N now indicates the LL index.

The LL spectrum of BLG has a pair of special states
N = 0, 1, that appear at zero energy in ungapped BLG
with the wave functions residing on different layers in
the opposite valleys. After the displacement field intro-
duces a layer asymmetry gap, these states split apart by
∆, resulting in the two lowest conduction band subbands
belonging to only one valley, e.g. K+ (then, the highest
valence band subbands would be from valley K−). The
other LLs in both valleys with N ≥ 2 have approximately
the same weight on the sublattices in the two layers and
very close energies. Such an asymptotic behavior corre-
sponds to the evolution of the subbands such that sub-
bands (n + 2)K+

eventually merge with subbands nK−

upon an increase in magnetic field as shown in Fig.4a.
For B < 0, the same pattern emerges with the two val-
leys interchanged (see Fig. 4b,c).

Note that the absence of hard edges characteristic for
the present electrostatically defined bilayer constriction is
critical for observing the interweaving pattern of crossing
states. In rough-edged constrictions broken valley sym-
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FIG. 3. (a) Bandstructure (conduction band) at B = 0 T of BLG in the presence of a confinement potential U(x) and a
modulated gap ∆(x) as described in the text showing a discrete, valley degenerate mode spectrum. Inset: lowest conduction
band of homogeneous gapped BLG (K− valley) for ∆0 = 150 meV with three minivalleys forming around the K-point. (b)
Bandstructure (conduction band) of the channel at B = 2.2 T, where symmetry between valleys is broken. The valley splitting
at small magnetic fields is proportional to the magnetic field. Inset: Berry curvature Ω of the corresponding states with non-zero
peaks in the three minivalleys. (c) Magnetic field dependence of the subband edges of the conduction bands in the electron
channel. The nontrivial Berry curvature of the zero-field states implies a non-zero orbital magnetic moment M of the states,
M ∝ Ω, which induces the linear in magnetic field splitting at small magnetic fields. At high magnetic fields the levels evolve
into the LLs of gapped BLG.

metry due to scattering quickly obscures the underlying
pattern. These difficulties aside, a similar crossing pat-
tern appears in principle in single layer graphene, as we
have verified numerically for an ideal constriction (see
Appendix H).

In conclusion, we reported on the experimental obser-
vation of the mode crossing pattern during the evolu-
tion from size quantization to the Hall regime in BLG
QPC. A valley splitting linear in magnetic field could be
explained by a non-trivial orbital magnetic moment of
states in gapped BLG. Our experimental results could
be reproduced by numerical simulations.

Note added : A closley related, complementary work
appeared on arXiv[30] during our submission process.
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