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We present a machine-learning method for predicting sharp transitions in a Hamiltonian phase
diagram by extrapolating the properties of quantum systems. The method is based on Gaussian
Process regression with a combination of kernels chosen through an iterative procedure maximizing
the predicting power of the kernels. The method is capable of extrapolating across the transition
lines. The calculations within a given phase can be used to predict not only the closest sharp
transition, but also a transition removed from the available data by a separate phase. This makes
the present method particularly valuable for searching phase transitions in the parts of the parameter
space that cannot be probed experimentally or theoretically.

It is very common in quantum physics to encounter a
problem with the Hamiltonian

H = H0 + αH1 + βH2 (1)

whose eigenspectrum can be readily computed/measured
in certain limits of α and β, e.g. at α = 0 or at α � β,
but not at arbitrary values of α and β. For such prob-
lems, it is necessary to interpolate the properties of the
quantum system between the known limits or extrap-
olate from a known limit. Both the interpolation and
extrapolation become exceedingly complex if the system
properties undergo sharp transitions at some values of α
and/or β. Such sharp transitions separate the phases of
the Hamiltonian (1). Because the wave functions of the
quantum system are drastically different in the different
phases [1], an extrapolation of quantum properties across
phase transition lines is generally considered unfeasible.

Here, we challenge this premise. We note that, while
certain properties of quantum systems undergo a sharp
change at a phase transition, other properties evolve
smoothly through the transition. Using the example of
three different lattice models, we show that the evolu-
tion of such properties within a given phase contains in-
formation about the transitions and the same properties
beyond the transitions. We present a machine-learning
method that can be trained by the evolution of such
properties in a given phase to predict the sharp transi-
tions and the properties of the quantum system in other
phases by extrapolation. The importance of this result is
clear. Characterizing quantum phase transitions embod-
ied in model Hamiltonians is one of the foremost goals
of quantum condensed-matter physics. Our work illus-
trates the possibility of predicting transitions at Hamil-
tonian parameters, where obtaining the solutions of the
Schrödinger equation may not be feasible.

The application of machine learning (ML) tools for

solving problems in condensed-matter physics has re-
cently become popular [2–34]. In all of these applica-
tions, ML is used as an efficient method to solve one of
three problems: interpolation, classification or clustering.
Interpolation amounts to fitting multi-dimensional func-
tions or functionals, whereas classification and clustering
are used to separate physical data by properties. For ex-
ample, ML can be used to identify quantum phases of lat-
tice spin Hamiltonians [5, 6, 12, 16, 19, 23, 24]. However,
in order to identify a quantum phase transition by in-
terpolation and/or classification, the aforementioned ML
models must be trained (fed on input) by the data de-
scribing both phases on both sides of the transition. The
distinct feature of the present work is a ML method that
requires information from only one phase and extrapo-
lates the properties of lattice models to and across the
transitions. To illustrate the method, we consider four
different problems: lattice polaron models with zero, one
and two sharp transitions, and the mean-field Heisenberg
model with a critical temperature. In all cases, we show
that the phase transitions (or lack thereof) can be accu-
rately identified.

We first consider a generalized lattice polaron model
describing an electron in a one-dimensional lattice with
N →∞ sites coupled to a phonon field:

H =
∑
k

εkc
†
kck +

∑
q

ωqb
†
qbq + Ve−ph, (2)

where ck and bq are the annihilation operators for the
electron with momentum k and phonons with momen-
tum q, εk = 2t cos(k) and ωq = ω = const are the elec-
tron and phonon dispersions, and Ve−ph is the electron-
phonon coupling. We choose Ve−ph to be a combination
of two qualitatively different terms Ve−ph = αH1 + βH2,
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where

H1 =
∑
k,q

2i√
N

[sin(k + q)− sin(k)] c†k+qck

(
b†−q + bq

)
(3)

describes the Su-Schrieffer-Heeger (SSH) [35] electron-
phonon coupling, and

H2 =
∑
k,q

2i√
N

sin(q)c†k+qck

(
b†−q + bq

)
(4)

is the breathing-mode model [36]. The ground state band
of the model (2) represents polarons known to exhibit two
sharp transitions as the ratio α/β increases from zero to
large values [37]. At α = 0, the model (2) describes
breathing-mode polarons, which have no sharp transi-
tions [38]. At β = 0, the model (2) describes SSH po-
larons, which exhibit one sharp transition in the polaron
phase diagram [35]. At these transitions, the ground
state momentum and the effective mass of the polaron
change abruptly.

Method. We use Gaussian Process (GP) regression as
the prediction method [39], described in detail in the Sup-
plemental Material [40]. The goal of the prediction is to
infer an unknown function f(·) given n inputs xi and out-
puts yi. The assumption is that yi = f(xi). The function
f is generally multidimensional so xi is a vector.

GPs do not infer a single function f(·), but rather a
distribution over functions, p(f |X,y), where X is a vec-
tor of all known xi and y is a vector of the corresponding
values yi. This distribution is assumed to be normal. The
joint Gaussian distribution of random variables f(xi) is
characterized by a mean µ(x) and a covariance matrix
K(·, ·). The matrix elements of the covariance Ki,j are
specified by a kernel function k(xi,xj) that quantifies the
similarity relation between the properties of the system
at two points xi and xj in the multi-dimensional space.

Prediction at x∗ is done by computing the conditional
distribution of f(x∗) given y and X. The mean of the
conditional distribution is [39]

µ(x∗) =

n∑
i

d(x∗,xi)yi =

n∑
i

αik(x∗,xi) (5)

where α = K−1y and d = K(x∗,X)>K(X,X)−1. The
predicted mean µ(x∗) can be viewed as a linear combina-
tion of the training data yi or as a linear combination of
the kernels connecting all training points xi and the point
x∗, where the prediction is made. In order to train a GP
model, one must choose an analytical representation for
the kernel function.

To solve the interpolation problem, one typically uses
a simple form for the kernel. In the limit of large n, any
simple kernel function produces accurate interpolation
results [39]. For example, k can be approximated by any
of the following functions:

kLIN(xi,xj) = x>i xj (6)

kRBF(xi,xj) = exp

(
−1

2
r2(xi,xj)

)
(7)

kMAT(xi,xj) =

(
1 +
√

5r2(xi,xj) +
5

3
r2(xi,xj)

)
× exp

(
−
√

5r2(xi,xj)
)

(8)

kRQ(xi,xj) =

(
1 +
|xi − xj |2

2α`2

)−α
(9)

where r2(xi,xj) = (xi − xj)
> ×M × (xi − xj) and M is

a diagonal matrix with different length-scales `d for each
dimension of xi. The length-scale parameters `d, ` and
α are the free parameters. We describe them collectively
by θ. A GP is trained by finding the estimate of θ (de-

noted by θ̂) that maximizes the logarithm of the marginal
likelihood function:

log p(y|X, θ,Mi) = −1

2
y>K−1y − 1

2
log |K| − n

2
log 2π

(10)

For the extrapolation problem, the prediction produced
by Eq. (5) is clearly sensitive to the particular choice of
the kernel function. While different interpolation prob-
lems can be solved with the same mathematical form
of the kernel function, different extrapolation problems
generally require different kernels. The key for success-
ful extrapolation is thus to find the appropriate kernel
function. Because we aim to solve a variety of different
problems with varying underlying physics, the procedure
for constructing the kernel must be fully automated and
independent of the particular problem under considera-
tion.

No kernel

RBF MAT RQ LIN

RQ × LIN· · ·RQ + MAT · · · RQ + RBF

RQ × LIN + RBF· · ·RQ × LIN × RBF · · · RQ × LIN + MAT

FIG. 1. Schematic diagram of the kernel construction method
employed to develop a Gaussian Process model with extrap-
olation power. At each iteration, the kernel with the highest
Bayesian information criterion (11) is selected. The labels in
the boxes correspond to the kernel functions defined in (6)-
(9).

Here, we follow Refs. [47, 48], to build a prediction
method based on a combination of products of different
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FIG. 2. Extrapolation of the polaron ground state momentum KGS (left) and effective mass m∗ (right) across the sharp
transition at λSSH = 2α2/t~ω ≈ 0.6 for the model (2) with β = 0. The black solid curves are the accurate quantum
calculations. The symbols are the predictions of the GP models trained by the full polaron dispersions E(K) at values of
λSSH ≤ λ∗, where λ∗ is shown by the vertical lines (solid for circles, dashed for triangles and dot-dashed for pentagons). The
GP models are used for interpolation (open symbols) and extrapolation (full symbols). The algorithm of Figure 1 yields the
kernel kRQ × kLIN + kRBF for the GP models represented by the triangles and pentagons, and kRQ × kLIN × kMAT for the
circles. Left inset: the polaron dispersions used as input (dashed curves) and predicted by the GP model (solid curves) with
λ∗ = 0.5 with the triangles showing the position of the dispersion minimum. Right inset: the polaron dispersions predicted by
the GP model trained with λ∗ = 0.6 (solid curves) in comparison with the quantum calculations (symbols).

kernels (6)-(9). To select the best combination, we use
the Bayesian information criterion (BIC) [49],

BIC(Mi) = log p(y|X, θ̂,Mi)−
1

2
|Mi| log n (11)

where |Mi| is the number of kernel parameters of kernel

Mi. Here, p(y|X, θ̂,Mi) is the marginal likelihood for

an optimized kernel θ̂. It is impossible to train and try
models with all possible combinations of kernels. We use
an iterative procedure schematically depicted in Figure
1. We begin by training a GP model with each of the ker-
nels (6)-(9). These kernels have one (LIN), d (RBF and
MAT) and 2 (RQ) free parameters [50]. The algorithm
then selects the kernel – denoted k0 – that leads to the
model with the highest BIC and combines k0(·, ·) with
each of the original kernels ki defined by Eqs. (6)-(9).
The kernels are combined as products k0(·, ·) × ki(·, ·)
and additions k0(·, ·) + ki(·, ·). Each kernel in the com-
bination is scaled by a constant factor, which introduces
another free parameter for the product or two parame-
ters for the sum. For each of the possible combinations,
a new GP model is constructed and a BIC is computed.
The kernel yielding the highest BIC is then used as a
new base kernel k0 and the procedure is iterated. This
fully automated algorithm is applied here to four dif-
ferent problems, yielding physical extrapolation results,
thus showing that Eq. (11) can be used as a criterion for
building prediction models capable of physical extrapo-
lation.

Results. All GP models are trained by the dispersions

E(K), where E is the polaron energy and K is the po-
laron momentum. These dispersions are calculated for
infinite lattices using the Momentum Average (MA) ap-
proach from previous work [37, 51–55]. The models are
trained to predict the polaron energy as a function of
K, and the Hamiltonian parameters α, β, and ω. The
vectors xi are thus xi ⇒ {K,ω, α, β}, while f(·) is the
polaron energy. Once the models are trained, we numer-
ically compute the ground state momentum KGS and
the polaron effective mass from the predicted dispersions
[56]. Note that we always train all models by the polaron
dispersions in one phase and the models have no a pri-
ori information about the existence of another phase(s).
The transition is encoded in the evolution of the polaron
band as a function of x. All results are in units of t.

Figure 2 shows the predictions for the pure SSH po-
laron model (β = 0, one sharp transition in the po-
laron phase diagram). The vertical lines show where
the training points end and the extrapolation begins.
As can be seen, the GP models predict accurately the
location of the transition and can be used for quan-
titative extrapolation in a wide range of the Hamil-
tonian parameters to strong electron-phonon coupling.
All models, including the ones trained by quantum cal-
culations far removed from the transition point, pre-
dict accurately the location of the transition. As the
coupling to phonons increases, the polaron develops a
phonon-mediated next-nearest-neighbor hopping term:
E(K) = −2tcos(K)+2t2(λSSH)cos(2K), where t2(λSSH)
is a function of λSSH [35]. The transition occurs when
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FIG. 3. The polaron ground state momentum KGS for the
mixed model (2) as a function of β/α for λSSH = 2α2/t~ω.
The color map is the prediction of the GP models. The curves
are the quantum calculations from Ref. [37]. The models are
trained by the polaron dispersions at the parameter values
indicated by the white dots. No other information is used.
The optimized kernel combination is (kMAT + kRBF ) × kLIN

(upper panel) and (kMAT×kLIN+kRBF )×kLIN (lower panel).

the second term dominates. Figure 2 shows that the GP
models trained using the algorithm of Figure 1 extrapo-
late accurately this evolution of the polaron energy.

The power of this method is better illustrated with
the example of the mixed breathing-mode – SSH model
(α 6= 0, β 6= 0) with three phases [37]. The dots in Fig-
ure 3 represent the points of the phase diagram used for
training the GP model with the optimized kernels. Re-
markably, the model trained by the polaron dispersions
all entirely in one phase predicts both transitions. The
location of the first transition is predicted quantitatively.
The second transition is predicted qualitatively. If the
model is trained by the polaron properties in two side
phases and the prediction is made by extrapolation to
low values of λSSH (lower panel of Figure 3), both tran-

sition lines are predicted quantitatively.
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FIG. 4. GP prediction (solid curves) of the free energy density
f(T,m) of the mean-field Heisenberg model produced by Eq.
(12) (dashed curves). Inset: the order parameter m0 that
minimizes f(T,m): symbols – GP predictions, dashed curve
– from Eq. (12). The GP models are trained with 330 points
at 1.47 < T < 2.08 (shaded area) and −1.25 < m < 1.25.

As a third independent test, we applied the method
to the Holstein polaron model defined by Eq. (2) with

Ve−ph = const
∑
k,q c

†
k+qck

(
b†−q + bq

)
. Such model is

known to have no transitions [38]. We find that the
method presented here can extrapolate accurately the
polaron dispersions to a wide range of the Hamiltonian
parameters and yields predictions that exhibit no sign of
transitions. Since it is often not feasible to explore the
entire phase diagram with rigorous quantum calculations,
especially for models with many independent parameters,
predicting the absence of transitions is as important as
locating different phases.

Finally, we demonstrate the method on an analyti-
cally soluble model. We consider the Heisenberg model
H = −J2

∑
i,j
~Si.~Sj in the nearest-neighbor approxima-

tion. Employing a mean-field description, the resulting
free energy density at temperature T is [1, 57, 58]

f(T,m) ≈ 1

2

(
1− Tc

T

)
m2 +

1

12

(
Tc
T

)3

m4, (12)

where m is the magnetization and Tc = 1.25 the critical
temperature of the phase transition. T > Tc corresponds
to the paramagnetic phase, while T < Tc is the ferromag-
netic phase.

We train GP models by the results of Eq. (12) in the
paramagnetic phase far away from Tc (shaded region in
the inset of Figure 4). We then extrapolate the function
f(T,m) across the critical temperature and compute the
order parameter m0 which minimizes f(T,m). Figure 4
demonstrates that m0 thus predicted can be accurately
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extrapolated across Tc and far into a different phase. This
demonstrates again the general idea behind the technique
developed here: use ML to predict the evolution of con-
tinuous functions that encodes phase transitions.

It is important to point out that the iterative kernel
selection algorithm of Figure 1 must be analyzed before
the present method is used for the quantitative extrap-
olation. As the iterations continue, the kernels become
more complex, more prone to overfitting and more diffi-
cult to optimize. The quantitative accuracy of the pre-
diction may, therefore, decrease. The Supplemental Ma-
terial illustrates the convergence to Figures 2, 3 and 4
with the kernel optimization levels and also the increase
of the prediction error after a certain number of levels.
To prevent this problem, we stop the kernel optimiza-
tion when the prediction error is minimal, as explained
in the Supplemental Material. We emphasize that this
does not affect the prediction of the transitions: once a
certain level of Figure 1 is reached, kernels from the sub-
sequent optimization levels predict the transitions. We
have confirmed this for all the results (Figures 2, 3 and
4) presented here. Thus, if the goal is to predict the pres-
ence or absence of transitions, this method can be used
without validation. It is sufficient to check that subse-
quent levels of the kernel optimization do not produce or
eliminate transitions. In order to predict quantitatively
the quantum properties by extrapolation, the training
data must be divided into the training and validation
sets. The models must then be trained with the train-
ing set and the error calculated with the validation set.
The kernel optimization must then be stopped, when the
error is minimal. This is a common approach to pre-
vent the overfitting problem in ML with artificial neural
networks.

Summary. We have presented a powerful method for
predicting sharp transitions in Hamiltonian phase dia-
grams by extrapolating the properties of quantum sys-
tems. The method is based on Gaussian Process re-
gression with a combination of kernels chosen through
an iterative procedure maximizing the predicting power
of the kernel. The model thus obtained captures the
change of the quantum properties as the system ap-
proaches the transition, allowing the extrapolation of the
physical properties, even across sharp transition lines.

We believe that the present work is the first example
of the application of ML for extrapolation of physical ob-
servables for quantum systems. We have demonstrated
that the method is capable of using the properties of
the quantum system within a given phase to predict not
only the closest sharp transition, but also a transition
removed from the training points by a separate phase.
This makes the present method particularly valuable for
searching phase transitions in the parts of the parameter
space that cannot be probed experimentally or theoreti-
cally. Given that the training of the models and the pre-
dictions do not present any numerical difficulty [59], the

present method can also be used to guide rigorous theory
or experiments in search for phase transitions. Finally,
we must note that, although the present extrapolation
method works well for all four problems considered, we
cannot prove that it is accurate for an arbitrary system so
the predictions must always be validated, as is common
in machine learning.
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