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A consistent, small-scale description of plasticity and dislocation motion in a crystalline solid is
presented based on the phase field crystal description. By allowing for independent mass motion and
lattice distortion, the crystal can maintain elastic equilibrium on the timescale of plastic motion. We
show that the singular (incompatible) strains are determined by the phase field crystal density, while
the smooth distortions are constrained to satisfy elastic equilibrium. A numerical implementation of
the model is presented, and used to study a benchmark problem: the motion of an edge dislocation
dipole in a triangular lattice. The time dependence of the dipole separation agrees with continuum
elasticity with no adjustable parameters.
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The plasticity of small-scale crystals under load is char-
acterized by intermittent strain bursts and dislocation
avalanches [1–7]. This complex response with scale-free
fluctuations lies squarely outside of classical continuum
plasticity theory, which assumes coarse-grained volumes
containing many defects, and hence valid on macroscopic
scales. More recent continuum plasticity theories [8–17]
are developed at nanoscale, as new state-of-art experi-
ments provide high-resolution imaging of crystal defects
and their evolution [18–20]. These theoretical develop-
ments focus however on the individual dislocation mo-
tion rather their collective effects and the scale-free phe-
nomena in crystal plasticity. Analogies with nonequilib-
rium critical phenomena, like depinning transition [21]
and jamming transition [5], have been proposed yet not
convincingly. Some statistical properties of interacting
lattice defects can be reproduced by discrete dislocation
dynamics models [4], which have arbitrary parameters
controlling the dislocation mobility and kinetics. We
therefore lack a consistent theoretical description of col-
lective dislocation dynamics without ad-hoc parameters.

The Phase Field Crystal model (PFC) is a leading con-
tender for the efficient mesoscale modelling of crystalliza-
tion phenomena [9, 22] and dislocation motion [6, 23–
25]. With a diffusive evolution of the PFC density field,
the existing PFC formulations are not adequate models
of small-scale crystal plasticity, when lacking a consis-
tent separation of timescales between the fast relaxation
of the elastic (smooth) distortions and the slow dynam-
ics of crystal defects associated to singular distortions.
This was recognized early and resolved by phenomeno-
logically adding ballistic degrees of freedom propagating
the fast elastic perturbations [23], which is some particu-
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lar limit of a hydrodynamic description for colloidal crys-
tals. More recent studies use the mode expansion of the
PFC density field to impose constraints on the phase evo-
lution of the periodic modes to ensure elastic equilibrium
[26, 27]. This description works for a perfect ”soft” crys-
tal near the critical point, and may not generalize nicely
to defected crystals far away from the melting point.

In this letter, we propose a consistent way of imple-
menting the timescale separation by introducing an in-
dependent variable related to static elastic distortions.
The elastostatic condition is added to the diffusive evo-
lution of the PFC density field which, as we have recently
shown [25], is an order parameter for the topological de-
fects as sources of singular distortions and their dissipa-
tive dynamics. As a classic example, the relative glide
motion of two edge dislocations of opposite Burger’s vec-
tors under each other’s stress field is studied in a tri-
angular lattice. In contrast with a direct solution of the
purely diffusive PFC model, we recover the internal stress
fields and dislocation velocities consistent with elastic-
ity theory. Our method bridges nicely between atomistic
and continuum formulations. It is applicable to both two
(2D) and three (3D) dimensional matter, different crystal
symmetries and a variable quenching depth range, thus
being a suitable model to quantitatively study complex
phenomena in small-scale crystal plasticity with mini-
mum input parameters.

A continuum theory of plasticity starts from the state-
ment of incompatibility of the deformation gradient ten-
sor

εilm∂lwmk = αik, wmk = ∂muk (1)

where εilm is the anti symmetric Levi-Civita tensor, αik
the dislocation density tensor, and wmk the distortion
tensor [28, 29] associated with the deformation field uk.
The integral of αik over a surface is the sum of the
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Burger’s vectors b corresponding to all the n disloca-
tion lines that pierce the surface

∫
S
αijdSj =

∑
n b

n
i . For

a given distribution of topological defects, α is fixed, but
not the distortion w. This can be decomposed into a
singular part, the curl of which yields αij , and a smooth
strain which we denote by uδij . The smooth strain is com-

patible, εikmεjln∂klu
δ
mn = 0. Regardless of the state of

distortion, plastic motion is slow on the scale of lattice
vibration, and occurs in mechanical equilibrium, as the
stress σij adiabatically follows the instantaneous distri-
bution of dislocations, ∂jσij = 0. Closure generally re-
quires a constitutive relation involving the stress and the
smooth deformation. These considerations and appropri-
ate boundary conditions are sufficient to specify the static
problem. Dynamically, over the time scale appropriate
for plastic flow, an evolution equation needs to be intro-
duced for the dislocation density tensor [8, 10, 13, 30, 31].
In field dislocation dynamics theories, its evolution is
kinematically related to the velocity of the dislocation
lines, which in turn requires a constitutive definition in
terms of a local free energy and a dissipation function
[32]. The PFC model of defect motion, as currently for-
mulated [9, 12, 27, 33], can be used to specify most of
the static and dynamic features just described, but not
all, as discussed below.

The PFC density ψ(r, t) is a physical order param-
eter that describes the dimensionless mass density of
the crystalline phase and inherits the lattice periodic-
ity, ψ(r) = ψ0 +

∑
g Age

ig·r, where the sum extends
over all reciprocal lattice vectors g of the lattice, and
Ag are the complex amplitudes for each period mode.
A non-convex free energy functional for an isothermal
system F is introduced so that its minimizer ψ∗ has
the desired symmetry of the crystalline phase. Lat-
tice constants appear as parameters. In dimensionless
units, we use F [ψ] =

∫
drf(ψ,∇2ψ) with f(ψ,∇2ψ) =

(Lψ)2/2+r2ψ2/2+ψ4/4, and L = 1+∇2 [9, 14, 34]. The
only remaining constant parameter r is the dimensionless
distance away from the symmetry breaking bifurcation.
For r > 0, ψ∗ = 0 is the only stable solution. For r < 0,
and depending on the conserved spatial average ψ0, ψ∗

is periodic with wavenumber unity in our dimensionless
units, but of various symmetries. For simplicity, we con-
sider a 2D system where the equilibrium configuration is
a triangular phase with lattice constant a = 4π/

√
3. The

Burger’s vector density in 2D is Bk(r) = α3,k(r), k = 1, 2.
Our results, however, can be readily extended to 3D. The
temporal evolution of the PFC density ψ is diffusive and
given by

∂tψ(r, t) = ∇2 δF
δψ(r, t)

(2)

where δ/δψ(r, t) stands for the variational derivative with
respect to ψ.

For smooth distortions of ψ∗, the free energy F suffices
to determine the stress-strain relation [12]. For small

distortions, we define a non-singular stress σψ [25]

σψij =
〈
σ̃ψij

〉
c
, σ̃ψij = [∂iLψ] ∂jψ− [Lψ] ∂ijψ+fδij , (3)

with the microscopic stress σ̃ψij given by the local varia-
tion of F with ∂iuj , and 〈·〉c denoting a spatial coarse-
graining by convoluting the microscpic stress with a
Gaussian with a width equal to a unit cell. σψij is symmet-
ric and related to the strain field uij = (∂iuj + ∂jui)/2
according to linear elasticity. For the triangular phase
under discussion, the relation is that of isotropic elastic-
ity

σψij = λδijukk + 2µuij (4)

with Lamé coefficients λ = µ = 3A2
0 [25]. The quantity

A0 is the amplitude of the uniform mode in a multiple
scale amplitude expansion of ψ∗.

Following early work on dislocation motion and grain
boundaries in roll patterns [35, 36], the PFC theory has
been used to study dislocation [13, 33] and grain bound-
ary motion [37, 38]. Strain fields have been explicitly
extracted [39], or imposed to analyze strained film epi-
taxy [40], and considered as the limiting case of phonon
degrees of freedom [27]. More complex properties of de-
fect motion such as specification of slip systems, defect
mobilities, and Peierls barriers are also given by PFC dy-
namics [25, 41, 42] thus opening the door to the study of
defect pinning, bursts, and avalanches. However, while
elastic equilibrium states with a fixed defected config-
uration can be found given appropriate boundary con-
ditions, any nonequilibrium local deformation of ψ(r, t)
propagates only diffusively according to Eq. (2). The rel-
evant transverse diffusion constant is small, and can even
vanish [43]. This is not physical for a crystalline solid, as
has been already recognized [23, 26, 27, 33]. In ordinary
crystals, unlike PFC model, elastic equilibrium compat-
ible with a transient distribution αik(r, t) and boundary
conditions is established quickly, in a time scale deter-
mined by damping of elastic waves in the medium.

To overcome this difficulty, we propose to use the PFC
density ψ(r, t) only as an indicator function of defect lo-
cation and topology, as well as governing local relaxation
near defect cores. The PFC field ψ(r, t) determines the
source for lattice incompatibility in Eq. (1), the solution
of which is only a particular singular solution for the de-
formation field. A smooth distortion uδ (in the null space
of the curl) must be added to this particular solution
to enforce elastic equilibrium. At each time, ψ(r, t) ob-
tained from Eq. (2) is then distorted ψ′(r + uδ) = ψ(r)
to ensure elastic equilibrium. This leads to a defect mo-
tion consistent with the Peach-Koehler force [25]. Plastic
motion is uniquely specified, with the only constitutive
input being the free energy functional F . We discuss in
what follows the details of our computational implemen-
tation, and specifically address the relative motion of a
dislocation dipole in a 2D triangular phase.
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FIG. 1: (a): PFC ψ for an initial condition of two disloca-
tions with opposite Burger’s vectors on the same glide plane.
Crystal planes in the [11] and [11] directions are indicated
to illustrate the structure of the dislocations in the triangu-
lar lattice. (b): Coarse-grained shear stress σψxy. (c): rhs of
Eq. (8), divided by 2µ, showing dipolar sources at the dis-
location positions. (d): Curl of the Burger’s vector density
as computed by demodulation in ref. [25], showing excellent
agreement with (c).

For obtaining uδ at a given time t, we decompose the
stress field into a singular part σψ arising from ψ(r, t),
and a small contribution σδ arising from the smooth dis-
tortion, so that σ = σψ +σδ is in mechanical equilibrium
∇ · σ = 0. This condition is satisfied by introducing the
Airy function χ, which in 2D reads σij = εikεjl∂klχ. In-
verting Eq. (4), we have in 2D

uij =
1

2
(∂iuj + ∂jui) =

1

2µ
(σij − κδijσkk) , (5)

where κ = λ
2(λ+µ) . Inserting Eq. (5) into the incom-

patibility relation in 2D εikεjl∂kluij = εij∂iBj(r) (e.g.
[28]) and expressing the stress in terms of χ-function, we
obtain that

1− κ
2µ
∇4χ = εij∂iBj(r), (6)

where Bj(r) =
∑
α b

n
j δ(r − rn) is the dislocation den-

sity in 2D for a configuration of dislocations with Burg-
ers vector bn at locations rn. In Ref. [25], we explicitly
computed B(r) through complex demodulation of ψ(r, t).
Demodulation yields both the amplitude and phase of the
deformation field; the former going to zero at the defect
core, the latter undergoing a discontinuity across a line
that terminates at the core. Figure 1(a) shows a dislo-
cation dipole in a 2D triangular lattice, and Figure 1(d)
the right hand side of Eq. (6)) obtained by demodulation.
We proceed differently here and introduce a more efficient
numerical procedure that does not require demodulation.
The smooth strain uδij is compatible (εikεjl∂iju

δ
kl = 0)

and therefore, with Eq. (5), the corresponding stress sat-
isfies,

εikεjl∂ij
(
σδkl − κδklσδll

)
= 0. (7)

We now proceed as if the linear decomposition σ =
σψ+σδ holds everywhere, including near dislocation cores
as defined by ψ. However, the computed stress field σ
will be divergence free only away from any defect core.
Given this decomposition σδij = εikεjl∂ijχ − σψij , we find
an analogous result to Eq. (6),

(1− κ)∇4χ =
(
εikεjl∂ijσ

ψ
kl − κ∇

2σψkk

)
. (8)

Note that the stress σψ from Eq. (3) is smooth and
bounded, so the right-hand side of Eq. (8) can only give
a nonsingular approximation to the singular right hand
side of Eq. (6). Figure 1(c) shows the right-hand side
of Eq. (8) obtained numerically for the dislocation dipole
which is in good agreement with Eq. (6) obtained through
demodulation (Fig. 1(d)). Notice that both methods act
as regularizations of the singular density at defect cores.

From a given ψ(r, t) at time t, we compute σψ from
Eq. (3), and then solve Eq. (8) to obtain χ and therefore
σ. The difference σδij = εikεjl∂ijχ − σδij leads to the

smooth strain uδij = (σδij − νσδkkδij)/(2µ) which is, by
construction, compatible. It can, therefore, be integrated
to obtain a compatible deformation uδ. The final step
in the computation is to redefine the PFC density as
ψ′(r + uδ, t) = ψ(r, t).

Although the stress-strain relation and stress superpo-
sition only hold far from defect cores, we define the stress
of this newly deformed configuration everywhere as

σij = σψij + σδij = σψij + λδiju
δ
kk + 2µuδij , (9)

which satisfies ∂jσij = 0 only far from defect cores. This
is not a problem because standard diffusive evolution of
the phase field suffices to equilibrate the stress near cores
in time. We discuss this further below, and in Fig. 2.

The integration of uδij to obtain uδ is carried out
through a Helmholtz decomposition into curl-free and
divergence-free parts uδi = ∂iV + εij∂jA. Applying the
divergence to this expression, one obtains a Poisson equa-
tion for the potential V , ∂iu

δ
i = uδii = ∇2V, which is

easily solved by spectral methods. On the other hand,
taking the curl we find εij∂iu

δ
j = εijεjk∂ikA = −∇2A,

which is a Poisson equation for A. Unfortunately the
source term depends on the antisymmetric part of the
smooth deformation gradient, which we do not obtain
directly from the elastic stress, as this only depends on
the symmetric part. We therefore apply another Lapla-
cian operator to the equation, and use the compatibility
relation εij∂iju

δ
k = 0 to find

∇4A = −εij∂ik(∂ku
δ
j + ∂ju

δ
k) = −2εij∂iku

δ
jk. (10)

This is a biharmonic equation for A with a known source
term, which is again easily solved by spectral methods.
In particular, if ki are the components of the k vector and
ûδij are the Fourier components of the residual strain, the
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FIG. 2: (a) Shear stress σψxy along the horizontal centerline
of the rightmost dislocation core from direct integration of
Eq. (2) (dashed line) compared with the our model (dot-
dashed line) and Eq. (12) (solid line). (b) Shear stress as a
function of the distance from the rightmost dislocation located
at x2 (marked in a), showing that the equilibrated stress fol-
lows linear elasticity from Eq. (12) in the far-field. (c) Disloca-
tion velocity as a function of dipole separation r12 = |r1− r2|
in the two models. Velocities are obtained from locating the
zeros of the complex amplitudes of ψ as described in Ref. [25].
The Peach-Koehler force with stress given by Eq. (12), and
mobility computed from F as given in [25]. There are no
adjustable parameters in this calculation.

Fourier components of the residual deformation can be
expressed as

ûδi = − iki
k2
ûδjj + 2iεijεrs

kjkrkl
k4

ûδsl, (11)

with the k = 0 component chosen to be zero to avoid
rigid body displacements. We then compute the distorted
PFC density ψ′(r) = ψ(r− uδ) on the original grid r by
expanding in Taylor series up to 5th in uδ.

Next, we discuss a benchmark configuration: the rel-
ative motion of two edge dislocations along the same
glide plane, Fig. 1(a). The periodic computational do-
main has 200× 200 unit cells with a spatial resolution of
a/7 = 4π/7

√
3 in the x direction, and 2π/6 in the y di-

rection. The initial distance between dislocations is 40a,
and we consider the parameters r = −0.2, ψ0 = 0.265.
We prepare the initial condition of ψ(r, t = 0) in the
one-mode approximation and seeded with a dislocation
dipole [25], and construct the distorted PFC density
ψ′(r, 0) = ψ(r − uδ, 0) using Taylor expansion. We
then solve Eq. (2) using an exponential-time differenc-
ing method with a time step of ∆t = 0.1 [44]. For the
PFC dynamics with mechanical equilibrium, we compute
the distorted PFC density between each time steps. In
the purely diffusive PFC, dislocations drift away from
the center line in the climb direction before approaching
each other to annihilate. This is suppressed under elas-
tic equilibrium. Figures (2)(a,b) shows σψ along a line
going through the rightmost dislocation located at r2 at
time t = 3600 obtained by direct integration of Eq. (2).
This is compared to our model at t = 779, corresponding
to a similar dipole size. In linear elasticity theory for an
infinite, isotropic medium, the shear stress of a dipole is

σxy =
2µ(λ+ µ)

λ+ 2µ

∑
n

bnx
2π

cosφn cos(2φn)

|r− rn|
, (12)

where φn is the azimuth relative to dislocation n, and
we also compare with this expression. Divergences in
Eq. (12) are regularized by ψ, and the stress near the
cores is relatively well described by σψ irrespective of
whether the smooth distortion (11) is applied between
time steps. Far from the cores, however, the two stresses
show qualitatively different asymptotic dependence. The
dot-dashed lines in Fig. (2)(a,b) show the stress in a con-
figuration in which the smooth distortion (11) has been
applied between time steps. The stress is still regular-
ized near defect cores, yet agrees with linear elasticity in
the far-field. Figure 2(c) shows the dependence of the
dislocation velocity on the dipole separation as given by
direct integration of Eq. (2), and by our model with im-
posed elastic equilibrium. For reference, we also show the
expected result from linear elasticity by using the Peach-
Koehler force with stress (12), and mobility derived from
F (Eq. (45) in Ref. [25]). There are no adjustable pa-
rameters in the calculation of the analytic velocity. The
two dislocations move towards each other until they an-
nihilate, with a velocity inversely proportional to their
separation. Our model captures this result well, while
the direct integration approach shows significant quali-
tative deviation form the expected behavior.

To summarize, we have argued that the PFC model
lacks deformation as an independent variable, and as a
consequence fails to maintain proper mechanical equilib-
rium during plastic motion. We retain the model because
it provides for lattice and topological defect structures
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as derived properties from the phenomenological free en-
ergy. It also allows regularization of defect cores and
singular stresses. PFC dynamics is also consistent with
the classical Peach-Koehler force, with mobility that is
again specified by the free energy F . We take the view,
however, that the PFC is not adequate to describe the
distortion of the lattice away from moving defect cores,
and hence supplement it with a smooth distortion field,
compatible with the topological content of the ψ, but
defined so as to maintain mechanical equilibrium every-
where away from defect cores. When the evolution of
ψ(r, t) is thus constrained, we show numerically that our
model agrees with the classical law of glide for a dislo-
cation dipole in isotropic, linear elasticity. Dislocation
climb is also captured by the diffusive PFC dynamics,
and the elastic equilibrium constraint is the same as for
glide. It would be interesting to further explore the effect
of compressive stresses on dislocation climb. Although
the analysis presented is based on a 2D triangular lat-
tice, it can be generalized to other crystal lattices and
3D by modifying the symmetry of F [45], and by solving
the corresponding anisotropic elasticity problem. These
results put the PFC model on firmer ground to study
more complex defected configurations at the nano- and
mesoscale.
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