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Due to its ubiquitous presence, turbulence is often invoked to explain the origin of nonthermal
particles in astrophysical sources of high-energy emission. With particle-in-cell simulations, we study
decaying turbulence in magnetically-dominated (or equivalently, “relativistic”) pair plasmas. We
find that the generation of a power-law particle energy spectrum is a generic by-product of relativistic
turbulence. The power-law slope is harder for higher magnetizations and stronger turbulence levels.
In large systems, the slope attains an asymptotic, system-size-independent value, while the high-
energy spectral cutoff increases linearly with system size; both the slope and the cutoff do not depend
on the dimensionality of our domain. By following a large sample of particles, we show that particle
injection happens at reconnecting current sheets; the injected particles are then further accelerated
by stochastic interactions with turbulent fluctuations. Our results have important implications for
the origin of non-thermal particles in high-energy astrophysical sources.

Despite decades of research[1-6], the origin of non-
thermal particles in space and astrophysical systems re-
mains poorly understood. Due to its ubiquitous pres-
ence, turbulence is often invoked as a promising source
of accelerated particles[7-9], and significant progress has
been made on both theoretical[10-14] and numerical|[15-
19] grounds. Turbulence is believed to play an impor-
tant role in the energization of nonthermal particles in
the solar corona and galaxy clusters[7-9], and it could
also be important in magnetically-dominated environ-
ments like pulsar magnetospheres and winds, jets from
active galactic nuclei, and coronae of accretion disks[20-
22]. Particle acceleration in magnetized turbulent flows
might indeed power the bright nonthermal synchrotron
and inverse Compton signatures from such high-energy
sources[23-25].

While the turbulence dynamics in magnetically-
dominated (“relativistic”) plasmas has been well char-
acterized by fluid simulations[26-34], the process of par-
ticle acceleration can only be captured from first princi-
ples by means of fully-kinetic particle-in-cell (PIC) codes.
Pioneering studies of particle acceleration via driven tur-
bulence in moderately magnetized pair plasmas[35] re-
ported the generic development of nonthermal power-law
distributions. However, the power-law tail was found to
steepen with increasing system size, with disappointing
implications for large-scale astrophysical sources. Here,
by employing PIC simulations in unprecedentedly large
domains, we show that the power-law slope reaches an
asymptotic, system-size-independent value, with harder
slopes for higher magnetizations and stronger turbulence
levels. We show that particle injection happens at re-
connecting current sheets; the injected particles are then
further accelerated by stochastic interactions with turbu-
lent fluctuations.

We solve the coupled Vlasov-Maxwell system of equa-
tions through the PIC method[36] employing the PIC
code TRISTAN-MP[37,38] to perform 2D and 3D sim-
ulations of decaying turbulence in pair plasmas. The

electron-positron plasma is initially uniform with den-
sity ng and follows a relativistic Maxwellian distribution
with thermal spread 6y = kgTy/mc®> = 0.3. We set up
a mean magnetic field (B) = ByZ and magnetic field
fluctuations 65, and 0B,, whose strength is parame-
terized by the magnetization oq = §B2 ., /4mnowemc?,
where 6B2 , = (0B?)—0, and wg = Yno + 0o is the
initial enthalpy per particle (y¢p0 is the mean parti-
cle Lorentz factor). We vary o¢ from 2.5 to 160 (i.e.,
in the magnetically-dominated regime oy > 1, where
the Alfvén speed approaches the speed of light) and
dBrmso/ Bo from 0.5 to 4. With our definition of oq, our
results do not depend on the choice of initial thermal
spread 0y (apart from an overall energy rescaling). We
also define o, = B2 /4mnowomc® = oo(B3/6B2,.4)-

Turbulence develops from uncorrelated fluctuations
with 0B, = 3=, Brnnsin(km@ + ¢mn) cos(kny + @mn)
and 0B, = — me Bmnm cos(kpmx + Omp) sin(kny +
©mn), where m,n € {1,..., N} are the mode numbers,
km = 27m/L and k,, = 2wn/L the wavenumbers along
x and y respectively, ¢y, and @, random phases, and
Bun = 20Bimso/[N(m? +n?)1/2]. With this choice, each
(m,n) mode carries the same power, so the initial en-
ergy spectrum peaks near ky = 27N/L, where L is the
domain size (typically, N = 8). This defines the energy-
carrying scale I = 27 /ky, used as our unit length. For 3D
simulations, we also modulate 0 B, and 0B, sinusoidally
in the z-direction, with two modes of wavelength L and
L/2 and random phases.

The large size of our computational domain (with L
up to 65,600 cells in 2D and up to 2400 in 3D) allows
to achieve asymptotically-converged results. The plasma
skin depth deo = ¢/wpo = \/Venome?/4mnge? is resolved
with 10 cells in 2D and 3 cells in 3D (in 2D we have
checked that d.g = 3 or 10 cells give identical results, in-
cluding the development of turbulent structures).
The simulation timestep is controlled by the numerical
speed of light of 0.45 cells/timestep. We typically em-
ploy 16 (macro)particles per cell in 2D and 4 per cell



in 3D, but we have tested that our results are the same
when using more particles per cell (up to 256 in 2D and
up to 16 in 3D).

Fig.1(a) shows the fully-developed turbulent state from
a 2D simulation with o9 = 10, by plotting the cur-
rent density J,. Vortexlike and sheetlike coherent struc-
tures are ubiquitous, in analogy to nonrelativistic kinetic
simulations|e.g.,39-43]. Elongated current sheets tend to
fragment into chains of plasmoids due to the plasmoid
instability[44-47]. As we show below, reconnecting cur-
rent sheets—a natural byproduct of turbulent cascades
in magnetized plasmas[48-52]—play a vital role for par-
ticle injection into the acceleration process. The time
evolution of the magnetic power spectrum Pg(k) is pre-
sented in Fig.1(b). Each curve refers to a different time,
as indicated by the corresponding vertical dashed lines in
the inset, where we present the energy decay in turbulent
fluctuations §B2 . /B2. As the magnetic energy decays,
the inertial range (kdep < 0.4) of the magnetic power
spectrum tends to flatten from Pg(k) oc k~°/3[53,54] to
Pp(k) o< k=3/2[55,56]. At kinetic scales (kdeo = 0.4), the
spectrum steepens to Pg(k) o< k=4, similar to what has
been found in kinetic simulations of driven turbulence
with moderate magnetizations[35,57].

The time evolution of the corresponding particle spec-
trum dN/dIn(y — 1) is presented in Fig.2(a), where v is
the particle Lorentz factor. The figure shows that effi-
cient nonthermal particle acceleration is a self-consistent
byproduct of relativistic turbulence. As a result of field
dissipation, the spectrum shifts to energies much larger
than the initial Maxwellian (shown by the blue line peak-
ing at vy — 1 ~ 0 — 1 =~ 0.6). At late times, when most
of the turbulent energy has decayed, the spectrum stops
evolving (orange and red lines): it peaks at v — 1 ~
Yeho(1400/2) —1 ~ 4, and extends well beyond the peak
into a nonthermal tail of ultrarelativistic particles, with
power-law slope p = —dlog N/dlog(y — 1) ~ 2.9. The
inset shows that the value of the power-law slope is not
universal: for fixed B2 ,/B2, the tail becomes harder
with increasing oy, in agreement with[35] and in analogy
to simulations of relativistic magnetic reconnection[58-
62]; more dramatically, at fixed magnetization o, the
spectrum is much harder for stronger turbulent fluctua-
tions (i.e., 6B2 /B3 > 1).

The power-law slopes quoted in the inset of Fig.2(a)
persist in the limit of asymptotically large domains. In
Fig.2(b), we show for oq = 10 and 6 B2, .,/ B3 = 1 the de-
pendence of the time-saturated particle spectrum on the
size of our 2D box, which we vary in the range L/d.o €
{410, 820, 1640, 3280,6560}. While earlier works, that
employed smaller domains, had claimed that the power-
law slope steepens with increasing system size[35], we
find that the slope saturates for asymptotically large sys-
tems (top inset in Fig.2(b)), which allows us to extrap-
olate our results to the astrophysically-relevant regime
L/dey > 1. On the other hand, the high-energy cut-
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FIG. 1. Developed turbulence from a 2D simulation with
oo = 10, (5Brmso/Bo =1, and L/deo = 3280 (With | = L/S)
Top: Current density J, at ct/l = 5.5 (normalized to enoc)
indicating the presence of coherent structures like current
sheets, plasmoids, and vortices (see inset). Bottom: Mag-
netic power spectra computed at different times, as indicated
by the vertical dashed lines (same color coding) in the in-
set, which also shows the time evolution of §BZ,s = (§B?)
normalized to BE.

off y.—defined as the Lorentz factor where the spec-
trum drops one order of magnitude below the power-
law best fit—linearly increases with system size (bot-
tom inset in Fig.2(b)). As discussed below, stochastic
acceleration by turbulent fluctuations dominates the en-
ergy gain of nonthermal particles. High-energy particles
cease to be efficiently scattered by turbulent fluctuations
when their gyroradius exceeds the energy-carrying scale
I = 27 /ky, implying an upper limit to their Lorentz fac-
tor of 7. ~ e\/(B?)l/mc® ~ /5, vtho(l/deo), which suc-
cessfully matches the scaling of v, on system size in the
inset of Fig.2(b) (this argument assumes that turbulence
survives long enough to allow the particles to reach this
upper limit). By varying [/L, we have explicitly verified
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FIG. 2. Top: Particle spectrum evolution for the simulation
in Fig.1. At late times, the spectrum displays an extended
power-law tail with slope p = —dlog N/dlog(y — 1) ~ 2.9.
The inset shows the dependence of p on § B2, / B2 and oy.
Bottom: Particle spectra at late times (ct/l = 12) for simula-
tions with fixed oo = 10, § Bimso/Bo = 1 and I = L/8, but dif-
ferent system sizes L/d.o € {410,820, 1640, 3280,6560}. The
insets show the dependence of p (dashed line is the asymptotic
slope p = 2.9) and the cutoff Lorentz factor v. (dashed line
is the predicted scaling . ~ 1/0z7vtho(l/deo)) on the system
size.

that . oc [, rather than ~, o L.

We have confirmed our main results with large-scale
3D simulations, since several properties of the turbulence
itself, as the energy decay rate and the degree of inter-
mittency, are known to be sensitive to dimensionality[53].
Results from our largest 3D simulation are presented in
Fig.3. The plot of J, in the fully-developed turbulent
state (top) shows the presence of a multitude of current
sheets, as found in 2D. The particle energy spectrum evo-
lution is presented in Fig.3(b). A pronounced nonther-
mal tail develops, whose power-law slope and high-energy
cutoff are remarkably identical to its 2D counterpart (in
the inset, we compare the time-saturated spectra of 2D
and 3D simulations for two different box sizes, which
nearly overlap).
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FIG. 3. Top: Current density J. at ct/l = 4 from a 3D sim-
ulation with oo = 10, dBwmso/Bo = 1, L/deo = 820, and
I = L/4, showing the copious presence of current sheets. Bot-
tom: Time evolution of the corresponding particle spectrum.
The inset shows for two different box sizes that the time-
saturated particle spectra are almost identical between 2D
(blue) and 3D (red).

To unveil the particle acceleration mechanisms, we
have tracked the trajectories of a random sample of
~ 108 particles from a 2D simulation with oy = 10,
dBimso/Bo = 1, and L/d.o = 1640. In Fig.4(a) we show
the Lorentz factor evolution of 10 particles that eventu-
ally populate the nonthermal tail (i.e., with v > 30 at
ct/l = 12, compare with the cyan line in Fig.2(b)). A
common feature of these tracks is the rapid energy in-
crease from v ~ vp0 up to v ~ 10 — 100. Indeed, we
have verified that the overwhelming majority (~ 97%)
of the particles belonging to the nonthermal tail experi-
ence in their life such a sudden episode of energy gain.
This event is extracting the particles from the thermal
pool and injecting them into the acceleration process.
Inspired by Fig.4(a), we identify the injection time ¢;,;
as the time when the energy increase rate (averaged over
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FIG. 4. Top: Evolution of the Lorentz factor for 10 repre-
sentative particles selected to end up in different energy bins
at ct/l = 12 (matching the different colors in the colorbar on
the right). Middle: PDFs of |J. p|/J:rms €xperienced by the
injected particles at their t;,,; (red circles) and by all tracked
particles at ct/l = 4 (blue diamonds). Bottom: Zoom of J, at
ct/l = 4 with circles indicating the positions of the particles
that are injected around this time.

At = 45dep/c) satisfies Ay/At > 4pr, and prior to this
time the particle Lorentz factor was v < 4vy¢n0 ~ 6. We
take i =~ 0.014/007inowpo, but we have verified that
our identification of ¢;,,; is nearly the same when varying
¢nr around this value by up to a factor of three.

We then explore the properties of the electromagnetic
fields at the injection location. The red circles in Fig.4(b)
show the probability density function (PDF) of the elec-
tric current density |J, | experienced by the particles at
their injection time (normalized by J, yms in the whole
domain at that time). The peak of the PDF is at

4

| Tep|l ~ 4T, ms, and ~ 95% of the injected particles
reside at |J,p| > 2J;1ms, & threshold that is usually
employed to identify current sheets[63]. This should be
contrasted with the blue diamonds, showing the PDF of
the electric current experienced by all tracked particles at
ct/l = 4, regardless of whether they are injected or not.
As expected, this peaks at zero, and only ~ 9% of par-
ticles have |J, p| > 2 J, rms. Thus, particle injection into
the acceleration process occurs at current sheets; more
specifically, at reconnecting current sheets. This is illus-
trated in Fig.4(c), where we show J,/enpc in a subset
of the simulation domain at ct/l = 4. The overplotted
black circles indicate the locations of particles whose t;;,;
is around this time. Clearly, most of the particles par-
ticipating in the injection episode reside at active recon-
nection layers, fragmenting into plasmoids.

Acceleration by the reconnection electric field[58-60]
governs the first phase of particle energization, as shown
in Fig.5. Here, each colored curve represents the average
Lorentz factor of particles having the same injection time
tin; (Within At;,; = 0.48¢t/l). The linear growth from
() ~ 1 up to (y) ~ 30 (i.e., the injection phase) is
powered by field-aligned electric fields, whose magnitude
is |E”| ~ BR(SBrmm via

d 5Brms
ﬂ = Br Bo o-(1 4 600/Yeno) Yenowpo - (1)

dt

The dashed black lines in Fig.5 show the predictions of
Eq.(1) assuming a reconnection rate S ~ 0.05, as appro-
priate for relativistic reconnection with guide field com-
parable to the alternating field[64].

After the injection phase, the subsequent energy gain
(which eventually dominates the overall energization of
highly nonthermal particles) is powered by perpendicular
electric fields via stochastic scatterings off the turbulent
fluctuations. This is a biased random walk in momen-
tum space, which can be modeled with a Fokker-Planck
approach[65], provided that the fractional momentum
change in single scatterings is small, as it is the case
in our simulations. From the Fokker-Planck equation for
relativistic particles,

dly) 1.0, 16V2, 7°
K = 22D D, = -2tms T g
dt ~¥2 Oy h p] ’ P33 e Amp(y) (2)

where D, is the diffusion coefficient in momentum space
for a stochastic process akin to the second-order Fermi
mechanism, 0V, is the typical velocity of the scatter-
ers (typically 6Vims/c < 0.3 in our simulations, which
justifies a nonrelativistic treatment), and Ay (7y) is the
particle mean-free-path. Since particles are most effi-
ciently scattered by turbulent fluctuations on the scale
of their gyroradius[66], we assume a Bohm-like scaling
for Amfp () = k(c/we)(Bo/d Brms)? where w, = eBy/yme
is the gyrofrequency and k is a dimensionless coefficient.
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FIG. 5. Evolution of the mean Lorentz factor of different
generations of particles. The initial energy gain, due to the
reconnection electric field, can be modeled as in Eq.(1) with
Br = 0.05 (dashed lines), while the subsequent evolution,
governed by stochastic interactions with the turbulent fluctu-
ations, follows Eq.(3) (dot-dashed line).

This leads to

d 108 0V,
;Z> = K o o (L Bo/7en0) eno o -
0
(3)

Taking the temporal decay of the magnetic and velocity
fluctuations directly from our simulation, we obtain for
= 10 the dot-dashed lines in Fig.5, which agree well
with our simulation results.

In summary, we have demonstrated that relativistic
plasma turbulence is a viable mechanism for particle ac-
celeration, since it self-consistently generates nonthermal
power-law tails. The power-law slope is harder (near p ~
2) for higher magnetizations and stronger turbulence lev-
els. Thanks to our large domains, we have demonstrated
that the power-law slope reaches an asymptotic, system-
size-independent value, while the high-energy spectral
cutoff increases linearly with system size: this allows to
extrapolate our results to the macroscopic scales of as-
trophysical sources. The time-saturated particle energy
spectrum is remarkably similar in 2D and 3D, suggesting
that the same acceleration process operates, regardless
of the dimensionality. By following a large sample of
particles, we have shown that their energization occurs
in two stages: particle injection happens at reconnecting
current sheets; this is followed by a phase of stochastic
acceleration where the particles scatter off turbulent fluc-
tuations. Analytical predictions are in agreement with
the simulations results, confirming the two-stage nature
of the acceleration process.
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