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Highly tunable platforms for realizing topological phases of matter are emerging from atomic and
photonic systems, and offer the prospect of designing interactions between particles. The shape
of the potential, besides playing an important role in the competition between different fractional
quantum Hall phases, can also trigger the transition to symmetry-broken phases, or even to phases
where topological and symmetry-breaking order coexist. Here, we explore the phase diagram of
an interacting bosonic model in the lowest Landau level at half-filling as two-body interactions are
tuned. Apart from the well-known Laughlin liquid, Wigner crystal phase, stripe, and bubble phases,
we also find evidence of a phase that exhibits crystalline order at fractional filling per crystal site.
The Laughlin liquid transits into this phase when pairs of bosons strongly repel each other at relative
angular momentum 4~. We show that such interactions can be achieved by dressing ground-state
cold atoms with multiple different-parity Rydberg states.

Introduction. In a strong magnetic field, a two-
dimensional (2D) electron system can form an incom-
pressible liquid phase exhibiting topological order, that
is, order without breaking any symmetry [1]. The Wigner
crystal [2, 3] competes with this liquid phase, and be-
comes energetically favorable at sufficiently low filling of
the lowest (n = 0) Landau level (LL) [4, 5], or via LL
mixing [6]. Other phases with broken symmetry have
been predicted for half-filled higher LLs (n > 1), us-
ing Hartree-Fock calculations [7–9] and exact numeri-
cal methods [10, 11]. These phases are characterized
by stripe or bubble patterns and have been observed
in transport experiments [12]. Since the early days of
fractional quantum Hall (FQH) physics, there have also
been different attempts to describe the FQH effect from
a crystal phase ansatz [13, 14]. Both fractionally quan-
tized and anisotropic transport has been seen experimen-
tally [15, 16], and different field-theoretic approaches de-
scribe this incompressible nematic phase in terms of an
effective gauge theory [17, 18] or assuming the softening
of the magnetoroton mode [19, 20]. Finally, recent nu-
merical work [21] claims evidence of a FQH phase with
nematic order in a microscopic model where the third and
the fifth pseudopotentials are comparable to the first one.

While electronic materials offer some knobs to control
interactions, e.g. via different substrates or patterned
metallic gates, their tunability is rather restricted. Thus,
it is tempting to study FQH physics, and the interplay
of topological order and symmetry breaking, in alterna-
tive systems with tunable interactions. Atomic gases are
promising platforms, with the possibility of generating
synthetic gauge fields by rotating the system [22] or by

optical dressing [23]. More recently, different strategies
have also allowed for generating an artificial magnetic
field for photons [24]. These systems are often bosonic,
but exhibit similar phases as the electronic systems, in-
cluding bosonic Laughlin phases and symmetry-broken
stripe and bubble phases [25–27]. Strikingly, in such con-
trollable systems, topological transitions between these
phases can be induced, e.g. by tuning the scattering
length via a Feshbach resonance [25, 28], by exploiting
confinement-induced resonances [29], or by modifying the
pseudopotentials via non-Abelian fields [30, 31].

Yet a richer phase diagram is expected in the presence
of more than one tuning knob. In this Letter, we study
a model with tunable pseudopotentials [21] and consider
the bosonic case which is more relevant to atomic, molec-
ular, and optical designer quantum Hall systems. We
focus on a system at filling fraction ν = 1/2, restricted
to the lowest LL, with fixed contact interaction U0, and
tunable pseudopotentials U2 and U4 characterizing the
scattering strength between bosons with relative angu-
lar momentum 2~ and 4~. Using exact diagonalization,
we identify different symmetry-broken phases surround-
ing the Laughlin liquid. When U4 > 0 becomes suffi-
ciently large, a new phase with striking features is found:
The N bosons form a lattice consisting of 2N sites, ex-
hibiting a symmetry-protected two-fold degeneracy of the
ground state at zero momentum. In contrast to the other
symmetry-broken phases, the overlap of the ground state
with the Laughlin wavefunction does not drop sharply as
the system is tuned from the Laughlin liquid into this
new phase. The transition is characterized by a soften-
ing of the magnetoroton mode. Finally, we demonstrate
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an experimental proposal based on ground-state atoms
dressed with multiple Rydberg states, which enable us
to explore a wide range of values of pseudopotentials,
including the most interesting one with U4 ∼ U0.

System.—We consider a 2D system of N bosons of
mass M subjected to a perpendicular gauge field, whose
strength is characterized by the cyclotron frequency ωc,
or, equivalently by the “magnetic” length lB ≡

√

~/Mωc.
The gauge field quenches all bosons into the lowest LL,
and interaction between two bosons with relative momen-
tum q (in units l−1

B ) is described by pseudopotentials [32],

Ul = (1/2π)2
∫

dq VqLl(|q|
2)e−|q|2 . Here, Vq is the po-

tential, and Ll are Laguerre polynomials. In our model,
we fix U0 > 0, tune U2 and U4 from the attractive to the
repulsive regime, whereas pseudopotentials with l > 4
are neglected. In the numerics, we consider a rectangu-
lar system of size a× b with periodic boundaries (torus).
The number of quantized fluxes Nφ equals 2N , that is,
ν ≡ N/Nφ = 1/2. We choose the gauge potential A
in the Landau gauge, A ∝ (0, x), and obtain a single-
particle basis of lowest LL wavefunctions ϕj(x, y) [33].
The quantum number j represents momentum along the
y-direction.

Evaluating the interaction matrix elements in this
basis, we write the Hamiltonian in terms of annihila-
tion/creation operators, H =

∑

ijkl Vijkla
†
ia

†
jakal. The

many-body Hilbert space divides into different sym-
metry sectors: Invariance under magnetic translations
leads to conserved (pseudo)momenta Kx [34] and Ky =

mod(
∑N

i=1 ji, Nφ). A sector Ky is connected to Ky +
Nφ/2 via a center-of-mass (COM) translation, such that
the magnetic Brillouin zone (BZ) can be folded onto a
M × M reciprocal lattice points, with M the greatest
common divisor of N and Nφ. Further reduction to
the irreducible BZ is possible due to reflection symme-
try, leading to an equivalence between Kx,y and −Kx,y

[35].

Numerical Results.—Via Lanczos diagonalization, we
obtained the low-energy eigenstates of H for up to N =
10, varying the parameters u2 ≡ U2/U0 and u4 ≡ U4/U0.
For u2 = u4 = 0, the Laughlin state is the unique
zero-energy ground state (at K = 0, and, related by
COM translation, at K = (0, Nφ/2), where units of
(2π/a, 2π/b) are neglected for notational brevity. By
evaluating the energy gaps ∆E (both the direct gap at
K = 0, and the absolute gap) and the overlap with the
Laughlin wavefunction, we obtain a putative phase dia-
gram in the u2-u4 space, see Fig. 1. The Laughlin phase
is surrounded by phases of broken symmetry with (quasi-
)degenerate ground states in different symmetry sectors.
A pronounced finite-size gap occurs when |u4| is large
and attractive, see Fig. 1(b).

To identify the order of each phase, we analyze
the ground-state pair-correlation function g2(z) ∝
〈
∑

i6=j δ(z − zi + zj)
〉

, where z ≡ x + iy, see Fig. 2.

FIG. 1. (a) Energy gap ∆E at K = 0 as a function of the
pseudopotentials. The infered phase diagram is indicated by
white dashed lines. The Laughlin phase (L) is surrounded
by a stripe phase (S), bubble phases (B1 and B2), an integer
Wigner crystal (WC) phase, and a fractional Wigner crys-
tal (FWC) phase. The star indicates the point for which the
experimental realization is discussed in detail. (b) The ab-
solute energy gap versus u2 and u4: Small gaps indicate a
symmetry-broken phase, in contrast to the larger gaps seen
in the Laughlin liquid phase. (c) The overlap with the Laugh-
lin wavefunction versus u2 and u4: Non-zero overlap persists
in the FWC phase. All data was obtained for 8 bosons on a
torus with ratio a/b = 0.9.

FIG. 2. The ground-state pair-correlation function g2(x, y) for
N = 8 and a/b=0.9 for different u2 and u4 corresponding to
the different phases: (a) triangular lattice with 1/2 boson per
lattice site (fractional Wigner crystal); (b) square lattice with
1 boson per site (Wigner crystal); (c) triangular arrangement
of “bubbles” (2 bosons per bubble), (d) square arrangement
of “bubbles” (4 bosons per bubble), (e) clustering along the
x-axis (stripe), (f) homogeneous Laughlin liquid.
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The Laughlin liquid stands out through perfect anticor-
relations, g2(0) = 0, and a homogeneous particle distri-
bution [Fig. 2(f)]. When u2 is repulsive and sufficiently
strong, clustered lattice configurations become favorable
[Fig. 2(c,d)]. Such “bubble” phases are also expected
for electronic systems in higher LLs [7–11], dipolar gases
[25], and Rydberg systems [27]. A configuration consist-
ing of a single cluster along one direction appears when
u2 is attractive [Fig. 2(e)]. In the case of an attractive u4

potential, we find a square crystal arrangement with one
boson per site [Fig. 2(b)]. Of course, compressible phases
depend also on the system geometry, chosen as a/b = 0.9
and N = 8. Similar results obtained for other system
sizes are presented in the Supplemental Material [36].

We now turn our attention to the interesting behavior
found when u4 is strong and repulsive [Fig. 2(a)]: The
pair-correlation function shows a triangular lattice struc-
ture with 2N − 1 peaks (plus a deep valley at z = 0), so
we call it a “fractional Wigner crystal” (FWC). A half-
filled crystal exhibits quantum fluctuations and frustra-
tion, and one might speculate that the bosons have frac-
tionalized into semions forming a lattice at filling 1. The
transition from the Laughlin liquid into the FWC phase
suggests a close relation between the FQH and the FWC
phases: As shown in Fig. 3(a), the FWC phase arises
through a softening of the magnetoroton mode, a col-
lective excitation branch obtained by a long-wavelength
density modulation of the Laughlin state [37]. Finite val-
ues of u4 soften this branch near |K|a/(2π) ≈ 4, and de-
generacy with the K = 0 ground state occurs at u4 ≈ 0.5,
giving rise to a symmetry-broken phase. In the same
regime, the first-excited state at K = 0 becomes quasi-
degenerate, too, and for u4 ≈ 0.5 the direct gap to the
second-excited state is minimal, see Fig. 3(b). The over-
laps of the FWC ground states with the Laughlin wave-
function at K = 0 [see Fig. 3(c)], and with the Laughlin
magnetoroton state at K = (4, 0) [see Fig. 3(d)] decays
smoothly as u4 is increased, but remains finite even deep
in the FWC phase. This behavior is in sharp contrast
to the behavior at the boundary between Laughlin and
bubble phase, shown in the insets of Fig. 3(c, d): Upon
increasing u2 at u4 = 0, a sudden drop of the overlap
to values near zero occurs at the phase boundary. These
observations suggest that Laughlin-like behavior remains
present in the ground and excited states of the FWC
phase.

A characteristic feature of each symmetry-broken
phase is its tower of states [38, 39], that is, the struc-
ture of the quantum numbers of the degenerate ground
states. This structure reflects the order seen in the pair-
correlation function: The triangular bubble phase (B1)
[Fig. 2(c)] has degenerate ground states (for N = 8)
at reciprocal lattice vectors Kmn = m(2, 1) + n(2,−1);
the square bubble phase (B2) [Fig. 2(d)] at Kmn =
m(1, 1) + n(1,−1), and the stripe phase (S) [Fig. 2(e)]
at Km = m(0, 1). In the FWC phase, the ground states
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FIG. 3. (a) Energy of the lowest two eigenstates at each
K, for different u4 (with u2 = 0). Increasing u4 softens the
magnetoroton branch around K = (4, 0) and K = (2, 4). (b)
Direct energy gaps ∆1EX and ∆2EX of the first and second
excited state at K = 0 and K = (4, 0), as a function of
u4 (with u2 = 0). (c) Overlap between the Laughlin state
and the three lowest eigenstates (K = 0) of H as a function
of u4, with u2 = 0. The transition into the FWC phase
(u4 ≈ 0.5) occurs without a sudden drop of the overlap, in
contrast to the transition into a bubble phase shown in the
inset (overlap vs. u2, with u4 = 0). (b) Overlap between
the Laughlin magnetoroton state at K = (4, 0) and the three
lowest eigenstates. All data in (a-d) was obtained for N = 8
and a/b = 0.9

form a pair of stripes winding twice around the folded
magnetic Brillouin zone, see Fig. 4. In contrast to con-
ventional stripe phases, the stripes are not parallel to a
symmetry axis of the torus, but they are parametrized
as Ki±

m = m(kix,±kiy), with kix 6= 0 6= kiy. The pair-
wise occurrence of these stripes is demanded by reflection
symmetry, and leads to characteristic double degenera-
cies at reciprocal lattice points where the stripes cross.
For N = 8 the two stripes describe exactly the same
set of points, and the ground state pattern in reciprocal
space matches with a triangular structure, also seen in
the correlation function for N = 8 [Fig. 2(a)]. In con-
trast, for N = 9 and 10, stripe crossings coincide with
reciprocal lattice points only at K = (0, 0). Accordingly,
also the correlation function deviates from the regular
lattice structure (see Supplemental Material [36]), but
still exhibits 2N − 1 peaks.

Experimental realization.— The phases discussed
above can be realized using cold ground-state alkaline
atoms dressed with Rydberg states [40, 41] in a syn-
thetic magnetic field generated by rotating the sys-
tem [22]. Typical interactions between s-state-Rydberg-
dressed atoms (dashed green curve in Fig. 5(a)) satu-
rate for distances smaller than the so-called Rydberg
blockade radius, a phenomenon studied in the context
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FIG. 4. We plot the folded magnetic Brillouin zone for dif-
ferent N , and mark with filled circles the symmetry sectors
belonging to the ground-state manifold in the FWC phase.
Doubly degenerate sectors are filled with two colors. The
ground states form two stripes (red and blue solid lines), re-
lated to each other via reflection, winding twice around the
zone.

of FQH states in Ref. [27]. For dressing with Rydberg p
states, the interaction can be non-monotonous (solid or-
ange curve in Fig. 5(a)) as a function of distance [42, 43].
Each of these two cases enable us to explore part of the
phase diagram; however, in order to access the FWC
regime we need even more flexibility in the shape of inter-
actions. We propose to combine the s- and p-state dress-
ing to achieve a hump-dip-hump potential (dot-dashed
curve in Fig. 5(a)).

As an example (see Fig. 5(b)) we consider ground-state
|g〉 = |F = 2,mF = 2〉 atoms of 87Rb weakly dressed
with two Rydberg states: (i) an npP1/2 state |+〉 =
|np,mJ = 1/2〉 using a laser field with Rabi frequency
2Ωp and detuning δ+, and (ii) an nsS1/2 state |s〉 =
|ns,mS = 1/2〉 using an effective Rabi frequency 2Ωs and
detuning δs. The coupling to |s〉 is achieved using a

FIG. 5. Experimental realization. (a) The s− and sp-dressing
lead to a standard soft-core potential (green and blue dashed
lines, respectively), whereas p-dressing leads to the potential
with a sharp dip (orange solid). Together they lead to a hump-
dip-hump potential (brown dot-dashed). The outer hump,
relevant for ensuring that U4 > 0, is shown in the inset. (b)
Level scheme for the dressing of the ground state |g〉 with
Rydberg states |s〉 and |+〉.

two-photon transition with single-photon detuning δ and
two Rabi frequencies 2Ωs,1, 2Ωs,2 ≪ |δ|, leading to Ωs =

−Ωs,1Ωs,2/δ. Without interactions and for |
Ωs/p

δs/p
| ≪ 1,

the dressed state takes the form |d〉 = |g〉−Ωs

δs
|s〉−

Ωp

δp
|+〉.

For weak dressing, the total two-body interaction V (r)
between two |d〉 states is a sum over separately calculated
potentials, V = Vpp + Vss + 2Vsp, where Vaa′ arises due
to the interaction of Rydberg states a and a′.
By choosing |np−ns| ≫ 1, we can neglect direct dipolar

coupling between two-atom states |s±〉 and |±s〉 (where
|−〉 = |np,mJ = −1/2〉) and describe the interactions us-
ing only diagonal van der Waals (vdW) potentials. The
vdW interaction between |±〉, assuming a magnetic field
perpendicular to the 2D plane, is

1

r6









α− β 0 0 β

0 α+ β
3

−β
3

0

0 −β
3

α+ β
3

0
β 0 0 α− β









(1)

in the {++,+−,−+,−−} basis, with α/2π =
690.2MHzµm6 and β/2π = 6204.3MHzµm6 for np =
62. This leads to the effective interaction Vpp between
the p components of the dressed state, which, within a
fourth-order-perturbation calculation, equals (~ = 1)

2Ω4
p

[

α(α− 2β) + 2δ−r
6(α− β)

]

δ3+ {α(α− 2β) + 2r6 [δ+(α− β) + δ− (α− β + 2δ+r6)}]
.

The interactions Vss and Vsp arise from standard dress-
ing of each ground-state atom with a single Rydberg level
interacting via a vdW C6/r

6 potential. In this case, the
interaction takes the form

C6 (δ1 + δ2) Ω
2
1Ω

2
2

δ21δ
2
2 [C6 + (δ1 + δ2) r6]

, (2)

where, for Vss, we set δ1 = δ2 = δs, Ω1 = Ω2 = Ωs,
and C6 = Css, while, for Vsp, we set δ1 = δs, δ2 = δ+,
Ω1 = Ωs, Ω2 = Ωp, and C6 = Csp.
The strength of Vss and Vsp relative to Vpp can be

tuned via Rabi frequencies, detunings, and principal
quantum number ns. By setting δ+/2π = −21.41MHz,
δ−/2π = 16.15MHz, we achieve a resonance-free hump-
dip Vpp potential [43], and by choosing δs/2π =
17.28MHz and ns = 52, such that Csp/(2πMHzµm6) =
−682.08 < 0 and Css/(2πMHzµm6) = 3918.89 > 0,
the other two potentials are also resonance-free, and Vsp

is much weaker than Vss, with Rydberg blockade ra-
dius between s states rss = 2.2µm [44]. We choose
lB = 2µm ∼ rss, so that we can neglect Uj for j > 4.
By choosing optimal Rabi frequencies, we can still op-
erate in a weakly dressed regime and simultaneously ac-
cess the hardest to achieve regime of strong U4, corre-
sponding to the hump-dip-hump potential in Fig. 5(a).
Specifically, for Ωp/(2π) = 1.32933MHz and Ωs/(2π) =
1.35679MHz, we get {u2, u4, u6} = {−0.72, 0.45, 0.11}
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with U0/2π = 0.00061 kHz and Im[Ul]/Re[Ul] < 0.01.
Finally, if the LL gap ωc is larger than the intra-LL pseu-
dopotentials and the relevant inter-LL interactions (both
are ∼ U0), we can neglect higher LLs. For lB = 2µm, this
is indeed the case, U0 ≪ ωc = 2π×0.029 kHz. By chang-
ing the detunings and Rabi frequencies and possibly vary-
ing them in time, one can investigate other phases of the
phase-diagram in Fig. 1 and study transitions between
them.

Summary.—We studied a FQH system that exhibits
a density modulation when higher pseudopotentials (in
particular U4) are on the order of U0 and proposed realiz-
ing such exotic interactions with Rydberg-dressed atoms.
Our scheme allows us to explore FQH scenarios beyond
those found in electronic systems with Coulomb inter-
actions. Our findings point towards an interplay of two
fundamental concepts, topological order and symmetry
breaking, which both appear to be present in our sys-
tem. Whether and how the concepts to classify topolog-
ical quantum liquids can be applied to the crystal phase,
is an interesting subject for future studies. Some nu-
merical results for the entanglement entropy [45–47] are
provided in the supplemental material [36].
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