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We study the non-equilibrium dynamics of Abelian anyons in a one-dimensional system. We find that the
interplay of anyonic statistics and interactions gives rise to spatially asymmetric particle transport together
with a novel dynamical symmetry that depends on the anyonic statistical angle and the sign of interactions.
Moreover, we show that anyonic statistics induces asymmetric spreading of quantum information, characterized
by asymmetric light cones of out-of-time-ordered correlators. Such asymmetric dynamics is in sharp contrast
with the dynamics of conventional fermions or bosons, where both the transport and information dynamics are
spatially symmetric. We further discuss experiments with cold atoms where the predicted phenomena can be
observed using state-of-the-art technologies. Our results pave the way toward experimentally probing anyonic
statistics through non-equilibrium dynamics.

Fundamental particles in nature can be classified as ei-
ther bosons or fermions, depending on their exchange statis-
tics. However, other types of quantum statistics are possi-
ble in certain circumstances. For instance, Abelian anyons
are characterized by fractional statistics interpolating between
bosons and fermions [1–5]. When two anyons are exchanged,
their joint wavefunction picks up a generic phase factor,
eiθ. Anyons play important roles in several areas of mod-
ern physics research, such as fractional quantum Hall sys-
tems [5–7] and spin liquids [8–10], not only because of their
fundamental physical interest, but also due to their potential
applications in topological quantum computation and infor-
mation processing [11–17]. In the beginning, the exploration
of anyons was restricted to two-dimensional systems. Later,
Haldane generalized the concept of fractional statistics and
anyons to arbitrary dimensions [18, 19].

The physics of Abelian anyons in one dimension (1D) has
attracted a great deal of recent interest [20–36]. Anyons
in 1D exhibit a number of intriguing properties, including
statistics-induced quantum phase transitions [37–40], asym-
metric momentum distribution in ground states [32–37, 41],
continuous fermionization of bosonic atoms [42], and any-
onic symmetry protected topological phases [41]. Several
schemes have been proposed for implementing anyonic statis-
tics in ultracold atoms [37, 38, 41–43] and photonic sys-
tems [44] by engineering occupation-number dependent hop-
ping using Raman-assisted tunneling [37, 38] or periodic
driving [42, 44]. Cold atom quantum systems [45–47] are
powerful platforms not only for probing equilibrium proper-
ties of many-body systems, but also for studying uncharted
non-equilibrium physics [48–57]. Yet, most of the non-
equilibrium studies to date have focused on fermionic or
bosonic systems, where anyonic statistics do not come into
play.

In this work, we study the interplay between anyonic statis-
tics and non-equilibrium dynamics. In particular, we study

the particle transport and information dynamics of Abelian
anyons in 1D, motivated by recent proposals [37, 38, 41, 42]
and the experimental realization of density-dependent tun-
neling [43, 58], as well as by technological advances in
probing non-equilibrium dynamics in ultracold atomic sys-
tems [50, 51]. As we shall see, statistics plays an important
role in the non-equilibrium dynamics of anyons. First, dis-
tinct from the bosonic and fermionic cases, anyons in 1D ex-
hibit asymmetric density expansion under time evolution of a
homogeneous anyon-Hubbard model (AHM). The asymmet-
ric transport is controlled by the anyonic statistical angle θ
and interaction strength U . When the sign of θ or U is re-
versed, the expansion changes its preferred direction, thus re-
vealing a novel dynamical symmetry of the underlying AHM.
We identify this symmetry operator and analyze the asymmet-
ric expansion dynamics using perturbation theory, confirm-
ing the important role played by statistics and interactions. In
addition, we use the so-called out-of-time-ordered correlator
(OTOC) [59] to characterize the spreading of information in
such systems. We find that information spreads with different
velocities in the left and right directions, forming an asym-
metric light cone.

In contrast to previous studies on ground-state proper-
ties [30, 33–35, 37, 38, 41, 42] or hard-core cases [29, 36, 60]
of 1D anyons, here we focus on the out-of-equilibrium physics
of anyonic systems which can be implemented in experi-
ment [37, 38, 41–43]. Moreover, we focus mainly on observ-
ables that both reveal anyonic properties directly and can be
probed in cold atom systems, where the anyonic statistics can
be realized via correlated-tunneling terms [42]. Crucially, our
work provides a new method for detecting anyonic statistics
even in systems where the ground state is difficult to prepare.

Model.—We consider 1D lattice anyons with on-site
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FIG. 1. Density expansion dynamics for particles initially localized one-per-site in the central N sites, with different statistical angles θ and
interaction strengths U . In all plots, the particle number is N = 4 and the lattice size is L = 30. (a)–(b) Bosonic cases with zero and non-zero
interactions, respectively. (c) “Pseudofermionic” case (θ = π) with non-zero interactions. (d)–(h) Anyonic cases with various values for θ and
U .

interactions—the anyon-Hubbard model [37, 38, 41–44]:

ĤA = −J
L−1∑
j=1

(
â†j âj+1 + H.c.

)
+
U

2

L∑
j=1

n̂j(n̂j − 1), (1)

where n̂j = â†j âj , and J and U describe nearest-neighbor tun-
neling and on-site interaction, respectively. Throughout the
paper, we set J = 1 as the energy unit. The anyon creation
(â†j) and annihilation (âj) operators obey the generalized com-
mutation relations[

âj , âk

]
θ
≡ âj âk − e−iθ sgn(j−k)âkâj = 0, (2)[

âj , â
†
k

]
−θ
≡ âj â

†
k − e

iθ sgn(j−k)â†kâj = δjk, (3)

where θ is the anyonic statistical angle. Here, sgn(k) =
−1, 0, 1 for k < 0, = 0, > 0, respectively. Equations (2)
and (3) imply that particles on the same site behave as bosons.
When θ = π, these lattice anyons are “pseudofermions,” as
they behave like fermions off-site, while being bosons on-
site [37].

By a generalized, fractional Jordan-Wigner transformation,
âj = b̂je

−iθ
∑j−1

k=1 n̂k , the above AHM can be mapped to an
extended Bose-Hubbard model (EBHM),

ĤB = −J
L−1∑
j=1

(
b̂†j b̂j+1e

−iθn̂j + H.c.
)

+
U

2

L∑
j=1

n̂j(n̂j − 1),

(4)
where b̂j is the bosonic annihilation operator for site j, and
n̂j = â†j âj = b̂†j b̂j [26–28, 37, 38, 42]. Under this trans-
formation, anyonic statistics have been translated to density-
dependent hopping terms, which are the key ingredient to im-
plementing anyonic statistics in 1D. As mentioned, one can
realize such terms in cold atomic systems using either Raman-
assisted tunneling [37, 38] or time-periodic driving [42–44].

Asymmetric particle transport.—We consider the expansion
dynamics of anyons initially localized at the central region of
a 1D lattice, one per occupied site. The initial state can be
written as a product state in Fock space, |Ψ0〉A =

∏
i â
†
i |0〉,

with occupied sites distributed symmetrically around the lat-
tice center. At times t > 0, the system evolves under ĤA

[Eq. (1)]. This procedure is equivalent to a quantum quench
from U/J = ∞ to finite U/J . To characterize particle trans-
port, we study the dynamics of the real space anyon density,
nAj (t) = 〈Ψ0| eiĤAtn̂je

−iĤAt |Ψ0〉A A, where we have set
~ = 1. Under the fractional Jordan-Wigner transformation,
the particle number operator n̂j remains invariant (i.e. â†j âj =

b̂†j b̂j), ĤA maps to ĤB , and the initial state picks up an unim-
portant phase φ, i.e. |Ψ0〉A = eiφ

∏
i b̂
†
i |0〉 = eiφ |Ψ0〉B .

These relations directly lead to the following equality:

nAj (t) = 〈Ψ0| eiĤBtn̂je
−iĤBt |Ψ0〉B B = nBj (t), (5)

which indicates that anyonic and bosonic particle densities are
equivalent under time evolution governed by their respective
initial states and Hamiltonians. Equation (5) maps anyonic
density to bosonic density, which can be directly measured in
cold atom experiments [37, 38, 41, 42, 50, 51]. Likewise, the
state |Ψ0〉B can be easily prepared in such experiments [50,
51].

Exact diagonalization results on the expansion dynamics
for a variety of statistical angles and interaction strengths are
shown in Fig. 1. Figures 1(a) and (b) show transport dy-
namics for the bosonic case (θ = 0). Consistent with ex-
perimental observations in Ref. [51], bosons exhibit ballis-
tic expansion when U = 0 [Fig. 1(a)]. However, any finite
interaction strength (U 6= 0) breaks the integrability of the
Bose-Hubbard model and dramatically suppresses the density
expansion [Fig. 1(b)], leading to diffusive (i.e., non-ballistic)
dynamics [51]. In contrast to bosonic cases, for anyons with
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FIG. 2. (a) Particle number difference ∆N between the right and left
halves versus anyon angle θ at time t = 4, which is beyond the per-
turbative regime yet occurs before the quench hits the boundary. The
interaction strength is U = 4. (b) ∆N versus interaction strength U
at time t = 4, with θ = π/3. The particle number is N = 4, and the
lattice size is L = 30 for both plots, just as in Fig. 1.

non-zero θ and even vanishing interaction strength, the trans-
port shows strong signatures of being diffusive rather than
ballistic [see Fig. 1(d)]. This implies that anyonic statistics
itself can break integrability and act as a form of effective
interaction [61], as is immediately clear from the correlated-
tunneling terms in the EBHM in Eq. (4). From Figs. 1(a) and
(d), we also note that for bosons or anyons with zero interac-
tion strength, the density expansion is symmetric.

Different from the above symmetric transport, for anyons
with 0 < θ < π and finite interaction strength U , the dy-
namical density distribution is asymmetric, with one preferred
propagation direction [Figs. 1(e)–(h)]. This is the most strik-
ing feature of anyonic statistics’ effects on transport behav-
ior. Such asymmetric expansion is due to inversion symmetry
breaking of the AHM [37, 62], a direct consequence of the
underlying 1D anyonic statistics [Eqs. (2) and (3)]. A pertur-
bation analysis reveals the important role played by statistics
and interactions (see Supplemental Material for details [63]).
Our results illustrate that anyonic statistics has clear signa-
tures in non-equilibrium transport, which may aid in their
detection. Previous works have suggested detecting anyonic
statistics via asymmetric momentum distributions in equilib-
rium ground states [33–38, 42], but ground states are often
difficult to prepare experimentally.

Figure 2(a) plots one measure of the above-mentioned
asymmetry, the particle number difference ∆N =∑L/2
i=1(ni+L/2−ni) between two halves versus statistical an-

gle θ. The results indeed show clear dependence on the statis-
tical parameter θ, thus demonstrating that one can detect the
underlying anyonic statistics using expansion dynamics. Fig-
ure 2(b) shows the dependence of ∆N on interaction strength
for fixed statistical angle. We note that the largest asym-
metric measure ∆N occurs for intermediate values of U , as
the expansion dynamics are symmetric at both U = 0 (ana-
lyzed below) as well as in the limit of large U (the hard-core
case) [29, 36, 60].

Symmetry analysis.—Comparing Figs. 1(g) and (h) to
Fig. 1(f), we can clearly see that by reversing the sign of the
statistical angle θ or interaction strength U , anyons also re-

verse their preferred propagation direction. This dynamical
symmetry is further illustrated in Figs. 2(a) and (b), which
provide evidence that ∆N is indeed an odd function of θ and
an odd function of U . The results differ from experimental
findings for fermionic/bosonic gases [50, 51], where density
expansion dynamics are identical for ±U (further analyzed in
a recent theoretical work, Ref. [64]).

To understand the dynamical symmetry, we focus on the
symmetry properties of the mapped EBHM for convenience.
ĤB explicitly breaks inversion symmetry I, as the phase of
the correlated-tunneling term depends only on the occupa-
tion number of the left site (which becomes the right site
under inversion). It also breaks time-reversal symmetry, as
T e−iθn̂jT −1 = eiθn̂j . However, if we consider the number-
dependent gauge transformation R = e−iθ

∑
j n̂j(n̂j−1)/2 and

define a new symmetry operator K = RIT , ĤB is invariant
under K [41, 63]:

KĤBK† = ĤB . (6)

The transformed EBHMs with the opposite sign of interaction
or statistical angle are related by the number parity operator
P = eiπ

∑
r n̂2r+1 or the time-reversal operator T , respec-

tively:

PĤB,+UP† = −ĤB,−U , (7)

T ĤB,+θT −1 = ĤB,−θ. (8)

Using Eqs. (6)–(8), one can derive the following rela-
tions [63]:

〈n̂j(t)〉+U = 〈n̂j′ (t)〉−U , (9)

〈n̂j(t)〉+θ = 〈n̂j′ (t)〉−θ, (10)

where 〈·〉 denotes the expectation value of a Heisenberg oper-
ator taken with respect to the initial state given above, and
sites j, j

′
are related by the inversion operator I. In fact,

the above equations hold for a more general class of initial
states (see Supplemental Material [63]). Therefore, in contrast
to fermionic/bosonic gases [64] (symmetric expansion), the
above relations indicate that anyons flip their preferred expan-
sion direction when one changes the sign of U or θ in Eq. (1).
The above equalities also immediately imply when θ = 0 or
π (bosons or “pseudofermions,” respectively) or when U = 0,
the transport is symmetric [shown in Figs. 1(a)–(d)], consis-
tent with previous results for integrable systems [29, 36, 60].

Information dynamics.—The spreading of information in an
interacting quantum many-body system has received tremen-
dous interest [48, 65–70]. For conventional fermionic or
bosonic systems with translation invariance, information
spreading occurs in a spatially symmetric way [66–68]. How-
ever, as we demonstrate below, this is not generally the case
for anyonic systems, where statistics can manifest itself in the
information dynamics.

We diagnose information spreading by examining the
OTOC, a quantity that has received a great deal of recent
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FIG. 3. OTOC growth |Fjk(t)| for different statistical angles θ and
interaction strengths U . Here, L = 7, β−1 = 6, k = 4, and the
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anyonic cases with (b) vanishing and (c),(d) non-vanishing interac-
tion strengths. The red dots denote where the OTOCs fall to 75% of
their initial values. The colormaps are interpolated to non-integer j
to better illustrate the light cone behavior.

interest in studies of quantum scrambling [69–81]. We de-
fine the anyonic OTOC as Cjk(t) =

〈
|[âj(t), âk(0)]θ|

2
〉
β

.
Here, 〈·〉β is taken with respect to the thermal ensemble

e−βĤA/ tr(e−βĤA) with inverse temperature β. The use of
the generalized commutator defined by Eqs. (2) and (3) en-
sures thatCjk(t) vanishes at t = 0. It then starts to grow when
quantum information propagates from site k to site j [68–71].
We focus on the out-of-time-ordered part of the above com-
mutator,

Fjk(t) =
〈
â†j(t)â

†
k(0)âj(t)âk(0)

〉
β
eiθ sgn(j−k). (11)

Figures 3(a)–(d) show numerical results for various inter-
action strengths U and statistical angles θ. In contrast to
the density transport shown in Fig. 1(b), quantum informa-
tion spreads in a ballistic way for bosons even when U 6=
0 [66, 67]. Indeed, for bosons (θ = 0), the OTOCs map out a
symmetric light cone, as shown in Fig. 3(a). However, for the
anyonic case (θ 6= 0, π), information propagation is asymmet-
ric for the left and right directions [Figs. 3(b)–(d)], resulting
in an asymmetric light cone. We emphasize that this occurs
even when U = 0, as the aforementioned dynamical symme-
try [Eqs. (9) and (10)] does not hold for the OTOC.

Figures 4(a) and (b) further illustrate the OTOC’s growth
for right and left propagation directions, respectively, with
θ = π/3 and U = 2. Indeed, information clearly propa-
gates faster from right to left [Fig. 4(b)] than from left to right
[Fig. 4(a)]. In order to extract the butterfly velocities most
accurately in a finite-size system, we choose the left-most site
as the reference point for probing information spreading right-
ward (and vice-versa for information spreading leftward). We
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define a butterfly velocity Vb by the boundary of the space-
time region where |Fjk(t)| is suppressed by at least 1% of its
initial value. The linear fits of butterfly velocities V l,rb for two
directions are shown in the inset of Fig. 4(b). The extracted
velocities’ dependence on θ and U are further illustrated in
Figs. 4(c) and (d), respectively. As the results show, when
U > 0 and 0 < θ < π, the left information propagation
velocity is always larger than the right one, with the greatest
disparity at intermediate values of U and θ.

Experimental detection.—To study the transport and infor-
mation dynamics of the AHM, one can experimentally real-
ize the transformed EBHM. As mentioned, the correlated-
tunneling terms in ĤB can be engineered using laser-assisted
tunneling [37, 38] or lattice shaking [42–44]. Particle trans-
port can be studied using similar protocols as in previous
experiments [50, 51], where bosonic atoms are first loaded
in the center of a 1D optical lattice before being allowed to
move under a homogeneous bosonic Hamiltonian. The time-
dependent densities, as measured by absorption imaging, di-
rectly reflect the anyons’ expansion dynamics. On the other
hand, measurement of the OTOC defined by Eq. (11) is more
challenging than mapping out the atomic density. However,
instead of measuring Eq. (11), one can focus on a bosonic
OTOC, F̃jk(t) = 〈b̂†j(t)b̂

†
k(0)b̂j(t)b̂k(0)〉, which, by recent

proposals, is experimentally accessible by inverting the sign
of ĤB [82–84] or by preparing two identical copies of the
system [68, 69]. Numerics show that F̃jk(t) can also capture
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the asymmetric features of OTOC growth [63], thus reflecting
anyonic statistics’ effect on information dynamics, albeit in an
indirect way.

Conclusion and outlook.—We have studied non-
equilibrium dynamics of Abelian anyons in a 1D system and
found that statistics plays a crucial role in both particle trans-
port and information dynamics. Our work provides a novel
method for detecting anyonic statistics using non-equilibrium
dynamics in ultracold atom systems [43].

We note the intriguing possibility that a similar dynamical
symmetry may exist in other models, such as the Zn chiral
clock model [85, 86], which has symmetry properties similar
to the AHM. Finally, we point out that the inversion symmetry
breaking associated with anyonic statistics is also present for
non-Abelian anyons in quasi-1D systems [87–89]—for exam-
ple, Majorana fermions (or, more generally, parafermions) at
the edge of (fractional) quantum Hall systems, in deep con-
nection with the underlying chirality. We hope this study
could motivate future investigation of out-of-equilibrium dy-
namics and chiral information propagation in these topologi-
cal systems.
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