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We introduce the Deformable Particle (DP) model for cells, foams, emulsions, and other soft par-
ticulate materials, which adds to the benefits and eliminates deficiencies of existing models. The DP
model combines the ability to model individual soft particles with the shape-energy function of the
vertex model, and adds arbitrary particle deformations. We focus on 2D deformable polygons with
a shape-energy function that is minimized for area a0 and perimeter p0 and repulsive interparticle
forces. We study the onset of jamming versus particle asphericity, A = p20/4πa0, and find that the
packing fraction grows with A until reaching A∗ = 1.16 of the underlying Voronoi cells at confluence.
We find that DP packings above and below A∗ are solid-like, which helps explain the solid-to-fluid
transition at A∗ in the vertex model as a transition from tension- to compression-dominated regimes.

There are many physical systems that can be mod-
eled as packings of soft, deformable particles, includ-
ing cell monolayers [1–3], developing tissues [4–6], com-
pressed foams [7] and emulsions [8]. We introduce the
Deformable Particle (DP) model, which has advantages
over previous models used to describe these systems. The
DP model considers deformable particles described by
an energy function that depends on particle shape, al-
lows motion of individual particles, can include different
particle interactions over a range of packing fractions φ,
and is easily defined in two (2D) and three (3D) spatial
dimensions.

The key feature of the DP model is that the parti-
cle shape is described by many degrees of freedom. The
shape and position of the particles evolve under New-
ton’s equations of motion according to a shape-energy
function, inter-particle forces, and external forces. Mod-
els based only on particle centers, such as the soft disk
model [9, 10], are not deformable in this sense. Even if
the particle perimeter and area can change, as in Voronoi-
based models [11–13], the particle shape in these models
is completely determined by the particle center, although
they can include complex multi-particle interactions. In
the vertex model [14, 15], each vertex is shared by at least
3 cells, which also constrains particle shapes. In addition,
the vertex and Voronoi-based models are limited to con-
fluent systems, φ = 1. An extension of the vertex model
to non-confluent systems has been developed [13], but it
uses Voronoi tessellation with a finite-size cutoff to de-
termine particle shape, and the particle boundary is not

described by independent degrees of freedom.
Soft disk models allow studies of the onset of jam-

ming of 2D soft particulate materials as a function of
φ, whereas the vertex model allows studies of the onset
of jamming as a function of particle shape, e.g. the as-
phericity, A = p2/4πa, where p and a are the particle
perimeter and area [16]. The DP model enables studies
of jamming as a function of both φ and A. We focus
on 2D and model N deformable “particles” (indexed by
m = 1, . . . , N) as polygons with Nv vertices (indexed by
i = 1, . . . , Nv) to represent Nv − 1 shape degrees of free-
dom. The location of the ith vertex in polygon m is ~vm,i,

the bond vector ~lm,i = ~vm,i+1 − ~vm,i = lm,i l̂m,i connects

vertices i + 1 and i, and pm =
∑Nv

i=1 lm,i. A general 2D
shape-energy function that can describe soft, particulate
systems is:
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Eq. 1 includes five terms: 1) a contractility term, where
adjacent vertices are connected via linear springs, with
spring constant per vertex kl and equilibrium length l0,
2) a compressibility term, which is quadratic in am with
a minumum at a0, 3) a line tension term proportional to
γlm,i, 4) a bending energy term with bending rigidity kb,
and 5) a repulsive interaction energy, Uint, which prevents
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overlaps between polygons. The prime on the sum in the
last term indicates that it is cyclic, so that ~lm,Nv connects
vertex i = Nv and 1. The factors of Nv and N−1v in the
first and fourth terms ensure that Eq. 1 is independent
of Nv in the large-Nv limit.

FIG. 1: Schematic of deformable polygons with Nv =
34 vertices (with the position of the jth vertex in the
mth polygon given by ~vm,j), area am, and perimeter pm.
lm,j = pm/Nv is the line segment between vertices j and
j + 1 in polygon m. Two methods were used to model
edges of deformable polygons. In (a) and (b), we show
the RS method, which fixes centers of disks with diam-
eter δ at polygon vertices. In (c) and (d), we show the
SS method, which models polygon edges as circulo-lines
with width δ. dmin is the minimum distance between line
segments lm,j and ln,k.

By tuning the parameters in Eq. 1, it can be used to
model a variety of soft, particulate systems. (See Sup-
plemental Material.) For example, if we set kl = kb = 0,
γ > 0 and ka > 0, Eq. 1 can model bubbles and emul-
sions [17]. We can model soft, solid particles by setting
γ = 0, kl > 0, ka > 0, and kb > 0. In this letter, we focus
on the shape-energy function with kl > 0, ka > 0, and
γ = kb = 0, which has been used to model cell monolay-
ers [14]:

U =
klNv

2

N∑
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By non-dimensionalizing Eq. 2, one can define the shape
parameter, A = (Nvl0)2/4πa0. For a rigid (regular) poly-
gon with Nv vertices, Av = Nv tan(π/Nv)/π, which re-
duces to Av = 1 when Nv →∞.

We implement two methods for calculating the repul-
sive interactions. For the rough surface method (RS), we
fix disks with diameter δ = l0 = 1 at each polygon vertex
[Fig. 1 (a) and (b)]. Repulsive interactions are obtained
by summing up repulsive linear spring interactions be-
tween overlapping disks on contacting polygons:

Uint =

N∑
m=1

N∑
n>m

Nv∑
j=1

Nv∑
k=1

kr
2

(δ − |~vm,j − ~vn,k|)2 (3)

× Θ(δ − |~vm,j − ~vn,k|),

where kr gives the strength of the repulsive interactions,
~vm,j is the position of the jth vertex in polygon m and
Θ(.) is the Heaviside step function. We also implemented
a smooth surface method (SS) by modeling polygon edges
as circulo-lines with width δ [16] [Fig. 1 (c) and (d)]. We
use Eq. 3 for the repulsive interactions between polygons,
except the overlap (δ − |~vm,j − ~vn,k|) is replaced by δ −
dmin, where dmin is the minimum distance between line
segments lm,j and ln,k on contacting polygons m and n.

The DP model includes two geometrical parameters:
A and the diameter of the vertices δ/l0 for the RS method
(or the width of the circulo-lines for the SS method). We
seek to characterize geometric properties of DP pack-
ings at jamming onset, and thus we focus on the limit
δ/Nvl0 → 0. The geometric properties of DP packings
at jamming onset do not depend on the two dimension-
less energy parameters from Eqs. 2 and 3, K1 = kl/kal

2
0

and K2 = kr/kl. Without loss of generality, we set
K1 = K2 = 1 below.

FIG. 2: (a) Packing fraction at jamming onset φJ (nor-
malized by φmax), (b) deviation of φJ from the confluent
value, 1−φJ , (c) coordination number zJ , and (d) average
friction coefficient µ (for the RS model) for DP packings
versus asphericity A. In (a) and (c), A is normalized by
Av of a regular polygon with Nv vertices. The dashed
lines in (a) and (b) indicate A = A∗ ≈ 1.16. In (a), we
also show φJ/φmax ≈ 0.81 (with φmax = 1) for N = 64
monodisperse, frictional discs using the Cundall-Strack
(CS) model with µ = 0.65 (filled diamond). In (c), the
dashed line indicates zJ(A/Av) = zJ(1)+z0(A/Av−1)β ,
where zJ(1) ≈ 3.3, µ = 0.65, z0 ≈ 3.9, and β ≈ 0.25.

We study DP packings containing N = 64 to 103

deformable polygons. To generate mechanically stable
(MS) packings, we perform isotropic compression with
each small increment, dφ < 10−4, followed by molecular
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FIG. 3: DP packings for the RS model with Nv = 34 and (a) A = 1.03, (b) 1.08, and (c) 1.16, near A∗. Polygonal
cells (solid lines) surrounding each deformable particle are obtained from surface-Voronoi tessellation.

dynamics with overdamped dynamics [18]. (See Supple-
mental Material.)

We show the packing fraction at jamming onset φJ
(normalized by the maximum packing fraction for each
surface roughness model, φmax) versus asphericity A/Av
for N = 64 DP packings in Fig. 2 (a). Note that
φmax ≈ 0.99 and 0.95 for the smooth and rough sur-
face methods, respectively, for Nv = 12 and φmax for
both methods converges to 1 as Nv → ∞ [Fig. 2 (b)].
φJ/φmax ≈ 0.82-0.83 (0.88) for the rough (smooth) sur-
face method near A/Av = 1 and φJ grows with increas-
ing A/Av. The results obtained near A/Av = 1 are sim-
ilar to previous results for jammed packings of monodis-
perse, frictionless (φJ ≈ 0.88-0.89 [19]) and frictional
disks (φJ ≈ 0.8 [20]). For A/Av > 1.02, φJ/φmax has
similar dependence on A/Av for the two surface rough-
ness methods. We find similar results for packings of
bidisperse deformable polygons (half large with N l

v = 17
and half small withNs

v = 12 and perimeter ratio r = 1.4).
In Fig. 2 (a), we show that φJ(A) is similar for N = 64
and 103, emphasizing that the system-size dependence is
weak. As shown in Fig. 2 (b), the packings become con-
fluent with φJ ≈ 1 for A > A∗ ≈ 1.16 in the large-Nv
limit (since the plateau value of 1−φJ decreases with Nv
for each model). We note that the self-propelled Voronoi
model [12] gives a transition from a disordered solid-like
state for A < Ac to a liquid-like state for A > Ac in the
limit of zero particle activity [21], and Ac ≈ A∗.

In Fig. 2 (c), we show the coordination number at
jamming onset zJ versus A/Av for deformable polygons
for the RS model. Near A/Av = 1, zJ < 4, which is
consistent with studies of packings of frictional disks [22–
25]. In contrast, we have shown before that the SS model
yields packings with zJ ≈ 4 near A/Av = 1 [16] (when
rattler polygons with fewer than 2 interparticle contacts
are not included). This result is consistent with isostatic
packings [26] of frictionless, monodisperse and bidisperse

disks. For both roughness models, zJ(A/Av) − zJ(1)
increases as a power-law in A/Av − 1. We find that
zJ = 5.8 ± 0.1 at confluence when A = A∗. In contrast,
prior work has suggested that zJ = 5 is the isostatic
contact number for the vertex model [11].

We also measured the effective friction coefficient µc =
|~F tmn|/|Frmn| at each contact c between polygons m and n

in DP packings using the RS model. |~F rmn| (|~F tmn|) is the
normal (tangential) component of the repulsive contact
force. For each packing, we find the maximum µc over
all contacts, averaged over at least 500 packings. From
previous studies [25], we know that the effective friction
coefficient for the RS model scales as µ ∼ √a0/Nvδ, for
A ≈ 1. Thus, we can study DP packings with fixed
friction coefficient and A → 1 by having increases in Nv
offset by corresponding increases in

√
a0. In the large-

Nv limit and for δ = l0 = 1, µ reaches a plateau value,
µ ≈ 0.65 [Fig. 2 (d)]. The contact numbers at jamming
onset for µ ≈ 0.65 and A → 1, zJ(1) ≈ 3.3 [24, 25]
(bidisperse) and larger for monodisperse packings [20],
are consistent with previous studies. For fixed Nv = 12,
we show that µ increases by an order of magnitude as
A increases from ≈ 1 to 1.25. We find similar increases
for µ(A) using larger Nv. Despite the strong increase
in µ for the RS model, both smooth and rough models
yield similar results for φJ(A) and zJ(A) away from the
rigid-disk limit. Thus, particle deformation weakens the
influence of surface friction on the structural properties
of DP packings. Note that the RS model can mimic static
friction in packings of non-spherical particles for all A.
(See Supplemental Materials.)

To understand the value A∗ ≈ 1.16 above which DP
packings are confluent, we calculate the free area ver-
sus A using surface-Voronoi tessellation [27–29]. Fig. 3
shows example packings at three A approaching A∗. At
A = 1.03, well-below A∗, the deformable polygons are
quasi-circular with a relatively large amount of free area.
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FIG. 4: (a) Distribution of areas at of surface-Voronoi tessellated polygons for A = 1.03 (squares), 1.12 (circles), and
1.22 (triangles) for N = 1000 monodisperse deformable particles with Nv = 12 and the RS model. The distributions
P(x) are plotted against x = (at− amin)/(〈at〉− amin), where amin is the minimum tessellated area for each packing.
Fits to the k-gamma distribution (Eq. 4) are shown as solid, dot-dashed, and dashed lines for A = 1.03, 1.12, and
1.22, respectively. (inset) Shape parameter k versus A from fits of P(x) to Eq. 4. (b) Bulk B and (c) shear G moduli
for DP packings using the model in (a) versus A for N = 32 (upward triangles), 64 (circles), 200 (squares), 512 (stars),
and 1000 (leftward triangles). The inset to (c) shows system-size scaling of G. The dashed lines have slope −1.

As A increases, the “effective” sides of the deformable
polygons straighten and fill the surface-Voronoi cells.
When A ∼ A∗, it is difficult to distinguish the deform-
bale polygons from the surface-Voronoi cells. (See Sup-
plemental Material.)

Prior studies showed that the areas of Voronoi poly-
gons for hard disks follow k-gamma distributions [30, 31]:

P(x) =
kk

(k − 1)!
xk−1 exp(−kx), (4)

where x = (at − amin)/(〈at〉 − amin), at is the area of
each Voronoi polygon, amin is the area of the smallest
Voronoi polygon, 〈at〉 is an average over Voronoi poly-
gons, k = (〈at〉 − amin)2/σ2

a, and σ2
a = 〈(at − amin)2〉

controls the width of the distribution. In Fig. 4 (a),
we show distribution P(x) for DP packings resembles
a k-gamma distribution with k-values that depend on
A. The inset shows k increases from 2.5 to 3.5 over the
range 1 < A < 1.25. Prior studies reported k-values for
Voronoi-tessellated hard disks [30] (k = 3.6) and jammed
bidisperse foams [7] (k ≈ 6).

Fig. 4 (b) and (c) depict bulk B and shear G moduli
for DP packings (RS model with Nv = 12) versus A for
several N . (See Supplemental Material for details of the
calculations.) B is roughly independent of N and changes
by more than two orders of magnitude with A. In con-
trast, at each N , G increases only by a factor of 3 as A
increases from 1 to 1.25. As a result, B/G varies from
103 to 105, indicating that the system is in the isotropic
elastic limit, over this range of A [32]. The inset of Fig. 4
(c) shows that even though DP packings at jamming on-

set are solid-like with G > 0 for any finite N , G scales
as N−1 for all A. Similar system-size scaling was found
for G in packings of frictionless [33] and frictional [34]
disks. The system-size dependence of G is related to the
fact that contacts begin forming and breaking at succes-
sively smaller pressures as N increases. MS packings can
be stabilized with G > 0 in the large-system limit by
compressing them above φJ . In Supplmental Material,
we show that U/N at confluence drops significantly as
A → A∗, which is similar to the behavior observed in the
vertex model [11].

Other than being confluent for A > A∗, what is dif-
ferent about DP packings above versus below A∗? In
the Supplemental Material, we show that the excess
perimeter ξ = p − pconv for DP packings, where pconv
is the perimeter of the convex hull of each polygon [35].
p ≈ pconv (with ξ = 0) for A < A∗. ξ becomes nonzero
for A > A∗ when deformable polygons buckle and de-
velop invaginations. Thus, DP packings at confluence
are under tension for A < A∗ and under compression for
A > A∗.

We developed the DP model, which can be used
to study packings of 2D deformable particles, includ-
ing foams, emulsions, and cell monolayers, over a range
of packing fraction, particle shape and deformability.
We focused on the DP model for cell monolayers with
nonzero kl and ka and showed that φJ grows with A,
reaching confluence at A∗ ≈ 1.16. A∗ coincides with
the asphericity at which deformable polygons fill the cells
from surface-Voronoi tessellation of DP packings. By cal-
culating their shear modulus G, we show that DP pack-
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ings are solid-like above and below A∗. For A > A∗, de-
formable polygons possess invaginations that grow with
A − A∗. Thus, at confluence, DP packings are under
compression for A > A∗ and under tension for A < A∗.
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Möbius, D. Weaire, and S. Hutzler, Colloids Surf. A
Physicochem. Eng. Asp. 534, 52 (2017).

[38] K. W. Desmond, P. J. Young, D. Chen, and E. R. Weeks,
Soft Matter 9, 3424 (2013).

[39] M. A. Klatt and S. Torquato, Phys. Rev. E 90, 052120
(2014).

[40] M. Merkel and M. L. Manning, New J. Phys. 20, 022002
(2018).


