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We confine a nematic liquid crystal with homeotropic anchoring to stable toroidal droplets and
study how geometry affects the equilibrium director configuration. In contrast to the case of cylindri-
cal confinement, we find that the equilibrium state is chiral - a twisted and escaped radial director
configuration. Furthermore, we find that the magnitude of the twist distortion increases as the
ratio of the ring radius to the tube radius decreases; we confirm this with computer simulations
of optically polarized microscopy textures. In addition, numerical calculations also indicate that
the local geometry indeed affects the magnitude of the twist distortion. We further confirm this
curvature-induced twisting using bent cylindrical capillaries.

A system with broken reflection symmetry cannot
be superimposed onto its reflection using only trans-
lations and rotations; it has a handedness and thus
is chiral [1]. Chirality can appear in systems com-
prised of chiral building blocks, as in some photonic
metamaterials [2], or quite remarkably, via sponta-
neous symmetry breaking in an achiral system [3].
This latter scenario is often studied in nematic liq-
uid crystals (NLC), an ordered material where the
constituent particles are achiral [4–14], anisotropic,
and preferentially align parallel to each other. This
common direction is referred to as the director, n.
The well-known Frank-Oseen free energy describes
the cost of splay, twist, bend, and saddle-splay dis-
tortions of n: F = (1/2)

∫
dV {K11(∇·n)2 +K22(n ·

∇×n)2 +K33(n× (∇×n))2− (K22 +K24)∇· (n(∇·
n)+n×(∇×n))}, where K11, K22, K33, and K24 are
the corresponding elastic constants. Under toroidal
confinement with a director that is everywhere tan-
gential to the surface, the achiral, axial state, shown
in Fig. 1(a), is unstable against the doubly-twisted,
chiral state, shown in Fig. 1(b), depending on both
K22/K24 and the aspect ratio of the torus, ξ = R0/a,
with R0 the central ring radius and a the tube radius
[see Fig. 2(a)] [10]. Furthermore, whenever reflection
symmetry is broken, the magnitude of the resultant
twist distortion grows with decreasing ξ, due to, in
large measure, the saddle-splay contributions to F ,
which effectively screen the energetic cost for twist-
ing [10, 15].

This doubly-twisted state is also found for cylin-
drical confinement when K24 > K22, despite the

FIG. 1. Director schematics of nematic tori with pla-
nar anchoring for an (a) axial and a (b) doubly-twisted
director field.

fact that simply aligning n along the long axis
of the cylinder would result in a distortion-free
state [12, 13]. The key here is again saddle-splay.
Importantly, under homeotropic confinement, cor-
responding to n being normal to the boundaries
of the cylinder, the saddle-splay contribution to F
takes a constant value and does not depend on
what n does in the bulk. Correspondingly, the
LC adopts an achiral configuration [16, 17], unless
K22 � K11,K33 [11], which is true for lyotropic
chromonic liquid crystals (LCLC).

In this Letter, we consider toroidal NLC droplets
with homeotropic anchoring using a LC where all
the elastic constants are comparable, and show that
despite the fact that saddle-splay plays no role in
the equilibrium director field, the confinement ge-
ometry still induces spontaneous reflection symme-
try breaking. Similar to prior results with planar
anchoring [10], where saddle-splay is of utmost im-
portance, we also find that the magnitude of the
resulting twist distortion increases with decreasing
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FIG. 2. (a), Schematic detailing the {r, θ, ϕ} toroidal
coordinate system, where r is measured from the central
ring and θ, and ϕ are the polar and azimuthal angles
in the torus, respectively. We characterize the slender-
ness, or aspect ratio of the torus with ξ = R0/a, the
ratio of the central ring radius, R0, and the tube radius,
a. (b,c), Bright-field and associated crossed-polar mi-
croscopy images of an example nematic toroidal droplet
with homeotropic anchoring, where ξ = 5. Scale bar is
250 µm. (d), Grayscale intensity profile for the region
highlighted in (c), where 1 corresponds to white and 0
to black.

ξ, revealing that such a geometric control of chi-
rality is general and does not depend on bound-
ary conditions. For a given NLC, the geometrically-
tuned chirality depends only on ξ, a ratio of curva-
tures. We confirm this using bent cylindrical cap-
illaries, where by keeping a constant and changing
R0 smoothly, we generate a gradient in the magni-
tude of the twist distortion. The ability to generate
chiral twist gradients is new and opens the door to
additional chirality-dependent fundamental studies.

We make stable toroidal droplets with the NLC
4-Cyano-4’-pentylbiphenyl (5CB, Heibei Chemical
Co.) in an outer yield-stress medium consisting of
a jammed dispersion of polyacrylamide hydrogels
(Carbopol ETD 2020, Lubrizol) [18]. The yield-
stress medium has approximately 8 mM sodium do-
decyl sulfate (SDS, Sigma Aldrich), a concentration
that yields strong homeotropic anchoring [19].

We show bright-field and crossed-polar images of
a representative toroidal droplet with ξ = 5 in
Fig. 2(b,c), respectively. In the regions where ϕ̂ is
aligned along either the polarizer (P) or analyzer
(A), the crossed-polarized texture [Fig. 2(c)] has the

characteristic dark-light-dark-light-dark pattern as-
sociated with the classic escaped radial (ER) config-
uration of homeotropic cylindrical nematics [16, 17].
This configuration is illustrated schematically in
Fig. 3(a). We experimentally generate this configu-
ration by filling a 150 µm inner-diameter (ID) cylin-
drical capillary (VitroCom) with 5CB. The capil-
lary is coated with lecithin (Granular, Acros) prior
to filling to induce homeotropic anchoring [18]. Ex-
ample bright-field and crossed-polarized images of
the capillary are shown in Fig. 3(b,c). Indeed, the
same dark-light-dark-light-dark pattern is found in
the crossed-polar images of both the toroidal droplet
[Fig. 2(c)] and the cylindrical capillary [Fig. 3(c)].
However, when we compare the grayscale inten-
sity profiles [20] taken across the tube of both the
toroidal droplet and the cylindrical capillary [high-
lighted regions, Fig. 2(c) and Fig. 3(c)], plotted in
Fig. 2(d) and Fig. 3(d), respectively, we see that
there are quantitative differences. Specifically, we
note that while both intensity profiles have two max-
ima surrounding a central minimum, the central
minimum in the intensity profile for the cylindri-
cal capillary [Fig. 3(d)] is much lower than the cen-
tral minimum in the profile for the toroidal droplet
[Fig. 2(d)]. We quantify this difference with an
intensity ratio, Imax/Imin, where Imax is the aver-
age of the intensity values of the two maxima and
Imin is the intensity value of the central minimum;
for the cylindrical capillary with an ER configura-
tion, Imax/Imin ≈ 4 while for the toroidal droplet,
Imax/Imin ≈ 1.6.

We also fill a 150 µm ID capillary with 31.5% w/w
Sunset Yellow (SSY) (90% purity, Sigma Aldrich),
a LCLC with K22 � K11,K33 [11, 18]. Be-
fore filling, the capillary is coated with Parylene
to enforce homeotropic anchoring [18]. Prior ex-
periments showed that this system spontaneously
breaks reflection symmetry and twists, adopting a
twisted escaped radial (TER) configuration, illus-
trated schematically in Fig. 3(e) [11].

A bright-field and crossed-polarized image of this
experiment is shown in Figs. 3(f,g), respectively.
By considering the grayscale intensity profile in
the highlighted region in Fig. 3(g) and plotted in
Fig. 3(h), we find Imax/Imin ≈ 1.3. Interestingly, the
intensity ratio found with the homeotropic toroid is
close to this value. More generally, using a vari-
ety of toroids with different ξ and a, we see that
Imax/Imin increases with ξ, from the floor provided
by the TER configuration in a cylindrical capillary
[open square, ξ =∞, Fig. 4(a)] to the ceiling set by
the ER configuration in a cylindrical capillary [tri-
angles and square, ξ = ∞, Fig. 4(a)]. From this,
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FIG. 3. (a,e) Director schematics, (b,f) bright-field and
(c,g) associated crossed-polar microscopy images of an
(a–c) escaped radial (ER) configuration and a (e–g)
twisted escaped radial (TER) configuration in a cylin-
drical capillary. The capillaries in (b,c) and (f,g) are
filled with 5CB and SSY, respectively, and the scale bar
is 100 µm. The nails in (e) represent the director com-
ing out of the page. (d,h), Grayscale intensity profiles
for the regions highlighed in (c,g), respectively, where an
intensity of 1 corresponds to white and 0 to black.

we hypothesize that although K22 is comparable to
K11 and K33 for 5CB, our homeotropic NLC toroids
have a TER configuration, with a decreasing twist
with increasing ξ.

To test this hypothesis, we first consider the
Frank-Oseen free energy with a radially symmetric
ansatz in the toroidal coordinate system, {r, θ, ϕ},
with {r, θ} polar coordinates in the circular cross
section and ϕ the azimuthal angle in the torus
[see Fig. 2(a)]. We define the angles α =

arctan (n · θ̂/n · r̂) and β = arctan (n · ϕ̂), describ-
ing the director orientation in the rθ-plane and rϕ-
plane, respectively. With this parameterization, we
have n = r̂ cosα sinβ + θ̂ sinα sinβ + ϕ̂ cosβ, with
β(r) satisfying β(0) = 0 and β(a) = π/2. Note that
α(r) = 0 corresponds to an achiral ER configuration
for a cylinder. However, for finite ξ, we find that
there is always a nonzero twist deformation energy,
even when requiring α(r) = 0 [21, 22].

Since K11 ≈ K33 for 5CB, we also consider

K11 = K33 = K and seek α(r) and β(r) that
are solutions to the Euler-Lagrange equations for
different values of ξ and K22/K. For a cylinder,
K22/K > 0.27 corresponds to the ER configuration,
whileK22/K < 0.27 results in the chiral TER config-
uration [11]. We find that the value of K22/K below
which the α = 0 configuration is unstable depends
quadratically on 1/ξ. This indicates that the region
where curvature destabilizes the untwisted ER con-
figuration against the TER configuration broadens
with decreasing ξ [21]. These two findings support
the idea that not only does geometry induce twist,
but that it can also be used to control it.

To further test our hypothesis, and since we can-
not measure the twist directly using waveguiding
measurements, as the TER structure does not sat-
isfy the required Mauguin criterion [10, 23], we
use Jones Calculus [23, 24] to simulate crossed-
polarized textures for a toroidal TER configuration.
We use an ansatz formed by coupling a doubly-
twisted director field in a torus with the ER di-
rector field in a cylinder in the one-constant ap-
proximation. In the toroidal coordinate system,
this ansatz is n = r̂ sin(Ω) + θ̂ cos(Ω) ωρξ

ξ−ρ cos θ +

ϕ̂ cos(Ω)

√
1−

(
ωρξ

ξ−ρ cos θ

)2
, where ρ = r/a, Ω =

2 arctan(ρ), and ω governs the amount of twist in the
director field. We produce textures for a variety of ξ
and twist angles, τ , where τ = 2 arcsinω is the angle
between the doubly-twisted portion of the director
along the line joining points in the circular cross sec-
tion at (r = a, θ = π/2) and (r = a, θ = 3π/2) [10].
Example textures in a torus with ξ = 5 for twist
angle τ = 0◦ and τ = 47◦ are shown in Figs. 5(a,b),
respectively. We measure the intensity profile for
each texture [see Fig. 5(c)] and correlate Imax/Imin

with τ . We find that Imax/Imin decreases monotoni-
cally with increasing τ [see Fig. 5(d)], indicating that
Imax/Imin is a proxy for twist and validating our ear-
lier hypothesis that twist decreases with increasing
ξ.

Our data then suggests that the twist is induced
by the geometry of the torus. To further confirm
this, we consider 5CB under homeotropic anchor-
ing in bent glass capillaries, as seen in the bright-
field image of an example capillary in Figure 4(b).
As with the toroids, we consider a crossed-polarized
image and measure the intensity profile across the
capillary in regions where the capillary axis is par-
allel to either P or A. By rotating P and A, we can
interrogate different regions in the same capillary;
we demonstrate this for the two example highlighted
regions in Fig. 4(b). A crossed-polarized image for
both regions is shown in Figs. 4(c,d), where P and
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FIG. 4. (a), Intensity ratio, Imax/Imin, as a function of the aspect ratio for the homeotropic nematic structures in this
work: toroidal droplets filled with 5CB (open circles), a straight cylindrical capillary filled with SSY in the transient
ER configuration (filled square) and stable TER configuration (open square), and bent and straight cylindrical
capillaries filled with 5CB (triangles). An infinite aspect ratio corresponds to a straight cylindrical capillary. (b),
Bright-field microscopy image of a bent cylindrical capillary filled with 5CB under homeotropic anchoring. Scale bar
is 200 µm. (c,d), Crossed-polar microscopy images of the highlighted regions in (b), with the polarizer and analyzer
orientations indicated schematically in the bottom-left of each image. (e,f) Grayscale intensity profiles across the
capillary for the highlighted regions in (c,d), respectively. (g,h), Cross-section director schematic of an ER and a
TER configuration, respectively, in a toroidal droplet.

FIG. 5. (a,b), The upper half of simulated crossed-polar
images of an ER and TER configuration, respectively,
in a torus. The twist angle in (b) is 47◦. (c), Intensity
profiles for the (circles, open squares) highlighted regions
of the tori in (a, b), respectively. (d), Intensity ratio,
Imax/Imin, as a function of twist angle for the simulated
crossed-polar images of TER configurations in a torus.

A have been rotated in each image to align with a
portion of the capillary axis. The intensity profiles
taken across the highlighted portion of Figs. 4(c,d)
are plotted in Figs. 4(e,f) and have Imax/Imin ≈ 1.8
and Imax/Imin ≈ 3.0, respectively.

For the example crossed-polarized images in
Figs. 4(c,d), we calculate the associated local aspect
ratio, ξlocal = Rcap/acap, with Rcap the radius of cur-
vature of the bent capillary axis at the highlighted
region of interest and acap the radius of the capil-
lary [18]. We find ξlocal = 6.8 and ξlocal = 9.1, re-
spectively. We plot the measurements of Imax/Imin

as a function of ξlocal for multiple bent capillaries
[triangles, Fig. 4(a)], and see that the data from the
capillaries fall on top of the data from our toroidal
droplets. This clearly indicates that the amount
of twist is determined solely by the local geometry.
From this perspective, ξ can be seen as a dimension-
less parameter locally comparing the relevant curva-
tures; a gives the radius of curvature in the bend dis-
tortion inherent to an ER configuration, while R0 is
the radius of curvature of the additional distortions
induced by bending the capillary. Bending the cap-
illary breaks the cylindrical symmetry of both the
bend and splay distortions in the ER configuration,
introducing a dependence on θ. This can be easily
seen by realizing that bending the capillary causes
the splay and bend distortions to increase near θ = 0
and decrease near θ = π. The aspect ratio in a sense
details the magnitude of the asymmetry in these dis-
tortions: as ξ decreases, the asymmetry between the
distortions near θ = 0 and those near θ = π grows,
resulting in the twist distortion becoming more en-
ergetically favorable. For the 5CB used in this work,
with K11 ≈ K22 ≈ K33, this asymmetry causes the
ER configuration to become unstable with respect
to the TER configuration [Figs. 4(g,h)].

In combination with prior results showing that ξ
dictates the amount of twist in NLC confined to
toroids with planar anchoring, our results in toroids
with homeotropic anchoring show that the ability
of the confinement geometry to affect the amount
of twist is general and does not depend on the
specific anchoring. In both scenarios, the key is
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ξ = κtube/κring = Ro/a, a ratio of curvatures. Since
ξ characterizes the local geometry, a gradient in
ξ induces a gradient in the amount of twist in a
TER configuration. Apart from studies of sponta-
neous reflection symmetry breaking, chiral nemat-
ics are key ingredients in experimental studies of
knot theory [25–27], of topological solitons in or-
dered fields [28, 29], and for controlled self-assembly
of colloids dispersed in NLC [30, 31]. Our approach
generates a chiral state in NLC without either im-
posing a predefined pitch through adding a chiral
dopant to the NLC [32], or patterning a specified
amount of twist through the boundary conditions,
as in a twisted nematic cell [23]. Furthermore, we
emphasize that the ability to generate a chiral twist
gradient, defined as a continuous change in space
in the magnitude of the twist, is new and could be
exploited in fundamental work addressing twisted
states. In addition, our theoretical approach to the
problem uses a reasonable ansatz and is just the be-
ginning of other more general approaches that would
allow quantitatively determining the role of geome-
try in the twisted state of homeotropic tori and in
other less symmetric objects.
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