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We demonstrate a novel response of a nonlinear micromechanical resonator when operated in a
region of strong, non-linear mode coupling. The system is excited with a single drive signal and
its response is characterized by periodic amplitude modulations that occur at timescales based on
system parameters. The periodic amplitude modulations of the resonator are a consequence of
nonlinear mode coupling and are responsible for the emergence of a “frequency comb” regime in the
spectral response. By considering a generic model for a 1:3 internal resonance, we demonstrate that
the novel behavior results from a saddle node on an invariant circle (SNIC) bifurcation. The ability
to control the operating parameters of the micromechanical structures reported here, makes the
simple micromechanical resonator an ideal testbed to study the dynamic response of SNIC behavior
demonstrated in mechanical, optical and biological systems.

Mode coupling has led to many novel and interesting
effects whose applications span across mechanical [1] [2]
[3] [4], optical [5] [6] [7], quantum information [8] [9] [10]
[11] and biological [12] [13] domains. It has been observed
in mechanical systems with dimensions in the nanoscale
[1] [14] [15] [16], microscale [17] [18] and in macroscale
objects like the Tacoma Narrows Bridge [19]. Typically,
mode coupling is achieved by parametric excitation where
the coupled modes do not have a rational frequency re-
lationship. As a consequence, this non-resonant modal
coupling is inherently inefficient due to the mismatch
in frequencies between modes [9]. Alternatively, reso-
nant mode coupling capitalizes on the condition where
the resonant frequencies of the distinct modes satisfy a
commensurate relationship enabling strong coupling and
efficient energy transfer among them. Resonant mode
coupling has been used to improve frequency stability
of non-linear resonators [20], to coherently exchange me-
chanical energy between modes [21], and for frequency
conversion [22].

In recent years, mode coupling in micro-mechanical de-
vices has been used to demonstrate the generation of
“frequency combs”, a series of equally spaced discrete
spectral lines [10] [16] [23] [24] [18] [25] [26] [27]. The gen-
eration of the combs in these systems results from para-
metric mixing between frequencies in mechanical systems
displaying both linear and non-linear responses typically
requiring multiple external drive signals and/or coupling

between three or more modes. In this Letter, we use a
single nonlinear mechanical resonator driven by a single
actuation signal to generate a frequency comb. We ob-
serve bursting behavior in the dynamic response of the
microelectromechanical (MEMS) resonator and the cor-
responding generation of a frequency comb with time
scales five orders of magnitude different than the reso-
nant frequency. The vastly different timescales between
the mechanical response and the bursting behavior along
with the periodic modulations in amplitude indicates a
significantly different mechanism for frequency comb gen-
eration than the ones reported above. To gain under-
standing of this new behavior, we introduce the normal
form describing the motion of the resonator, show the
creation of a saddle node on an invariant circle (SNIC)
bifurcation, and for the first time, characterize the effect
of the SNIC bifurcation on a mechanical structure. Addi-
tionally, we determine system parameters from the exper-
imental measurements and show agreement between the-
ory and experimental data. Finally, control of the burst-
ing behavior is demonstrated experimentally through
variation of the system parameters resulting in a tunable
frequency-comb spacing in good agreement with theory.
Furthermore, the bursting behavior demonstrated here
represents a universal response for any type of system
that follows the normal form with similar system param-
eters.

The electromechanical resonators used in this study
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are clamped-clamped single crystal silicon beams with
lateral comb drives for electrical actuation of the device
and sensing of its motion through a displacement current
(Fig. 1a) [20] [21] [28]. The resonator is driven with am-
plitude, Vo, at frequency, fF. The two vibrational modes
of interest are the fundamental in-plane flexural mode
with a natural frequency of 62973 Hz and a linear decay
rate of Γflex= 1.9 Hz, and a torsional mode with natural
frequency of 192960 Hz and a linear decay rate, Γtor= 4.7
Hz (see supplemental materials for further information).

It is the dynamical interaction of the in-plane flexural
mode and the out-of-plane torsional mode which results
in the generation of a frequency comb in these nonlin-
ear resonators. When the flexural mode is driven with
sufficient amplitude (Vo > 300µV ), the mode exhibits
frequency stiffening due to its Duffing non-linearity [29]
[30] (Fig. 1b). In the nonlinear regime of operation,
the resonator is bistable and can follow two different sta-
ble responses: a large amplitude (upper) branch and a
small amplitude (lower) branch. When increasing the
drive frequency, the resonator follows the upper branch
until a critical frequency, fSN. At fSN, the high ampli-
tude branch (represented by a node in the rotating frame)
merges with an unstable branch (a saddle in the rotating
frame) and the two annihilate one another. As a conse-
quence, the resonator drops to the lower branch, shown
by the vertical lines in Fig. 1b. As the drive strength
and frequency are successively increased, the operation
point approaches a 1:3 internal resonance with the tor-
sional mode. In the vicinity of the internal resonance
(fF ≈ ftor/3), the system undergoes a saddle node (SN)
bifurcation, which occurs before the expected Duffing SN
as a result of the nonlinear mode coupling [20].

For sufficiently large drive amplitude at the internal
resonance, the response of the resonator does not transi-
tion to the lower branch at the SN, but exhibits complex
periodic modulations as shown in Fig. 1c. The timescale
of these modulations is approximately 5 orders of mag-
nitude longer than the drive period, 1/fF. From Fig.
1c, we see that the first (flexural) and third (torsional)
signals exhibit fluctuations with distinct transitions from
calmer epochs to periods of large modulations; gener-
ating a comb in the frequency domain with equidistant
spacing of the spectral lines, as shown in Fig. 1d. The
periodic bursting behavior in amplitude results from a
relative phase slip between the modal responses and the
driving signal. This type of phase slip is similar to clas-
sic examples like the damped, driven pendulum and the
Josephson junction near critical current (see Strogatz [31]
Ch. 4 and 8), with a more interesting response near the
bursts due to additional degrees of freedom resulting from
the coupled resonant modes.

To explain these results, we introduce the non-
dimensional Hamiltonian describing the mode coupling
through a nonlinear 1 : 3 internal resonance. The two vi-
brational modes are characterized by coordinates qk and

momenta pk (k = 1, 2). The primary mode (k = 1) is
subjected to harmonic drive and has a Duffing nonlin-
earity.
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where ω0i are the modal natural frequencies, κ is the
inter-modal coupling strength, and F ∝ Vo is the
strength of an external periodic field that drives the pri-
mary mode at the angular frequency, ω1. The expla-
nation of the conversion to the non-dimensional param-
eters can be found in the supplemental materials. In
our analysis, we also assume that both modes are cou-
pled to a thermal reservoir, leading to corresponding lin-
ear friction forces −2Γ1,2q̇1,2. The values for the modal
parameters are determined from standard experimental
measurements of the two individual modes separately as
described in supplemental materials while the value of
the coupling, κ, is obtained by matching the experimen-
tal coupled mode response of the device to predictions
from the model.

By grouping the terms of the second mode in Eq. 1,
it is seen that the response of the second mode is that
of a simple harmonic oscillator being resonantly driven
by the motion of the first vibrational mode. Once ex-
cited, the amplitude of the second mode results in back-
action on the dynamics of the first mode, dictated by
the normalized coupling coefficient, κ. Also, note that
the interaction between the two modes is described by
a single term that is sufficient to capture the features of
the resonance through the normal form for this resonance
[29]. Importantly, this form of the inter-modal coupling
arises naturally due to an asymmetry in the equations of
motion for flexural and torsional degrees of freedom and
their intrinsic nonlinearities [21]. As a result, the linear
modal (eigen-) coordinates, qi, correspond to vibrational
modes that are primarily dominated by the flexural and
torsional motions, respectively, but are combinations of
these degrees of freedom.

In order to understand the dynamics of the system
observed experimentally and described by the model in
Eq. 1 with linear friction forces, it is convenient to switch
to the rotating frame of reference by transforming qi to
their complex amplitude form (Supplemental Materials).
This yields the following system of equations for normal-
ized complex mode amplitudes A1 and A2:

Ȧ1 = −[1 + i(∆ω1 − |A1|2)]A1 + iκA2Ā
2
1 − iF, (2)

Ȧ2 = −(Γ21 + i∆ω2)A2 +
iκ

9
A3

1. (3)

where ∆ω1 = 2π(fF−fflex)/Γ1, ∆ω2 = 2π(3fF−ftor)/Γ1,
and Γ21 = Γ2/Γ1. This model provides a means of pre-
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dicting the system response as drive parameters (F and
fF ) are varied. The steady state response (A1s, A2s) of
the coupled system can be found by solving Ȧi = 0, yield-
ing an implicit expression for the A1s in terms of the
system and drive parameters (Supplemental Materials),

F = i

[
1 + i(∆ω1 − |A1s|2) +

κ2|A1s|4

9(Γ21 + i∆ω2)

]
A1s. (4)

From Eq. 3 and Eq. 4, it is seen that the coupling be-
comes important when |∆ω2| ≈ Γ21. Of interest here
are SN bifurcation conditions of the steady-state, which
correspond to the merging and annihilation of pairs of
responses. For example, at the edges of bi-stability in
the Duffing model, these bifurcations can be found from
conditions for degenerate (repeated) solutions of Eq. 4.
From the model, the bifurcations occur at the solid blue
line in Fig. 2a. In the coupled system, when mode A1

is excited with relatively strong drive and the drive fre-
quency is increased, at the frequency, fSN, a SN bifurca-
tion occurs before the Duffing SN, due to the resonant
interaction with the torsional mode. The SN condition
saturates near ftor/3 (Fig. 2(a) red line). When overlaid
with the experimental data (black circles), Fig. 2a, the
predictive model agrees with and fits the data very well
considering the complex behavior of two coupled modes.
Additional comparison between the model and the exper-
imental data can be found in the supplemental materials
with references [32] [33].

The manner in which the SN bifurcation creates the
long period response shown in Fig. 1 can be qualitatively
explained using the stability graphics shown in Figs. 2
(b)-(d) (top: 1D case; bottom: 2D case). When the res-
onator is driven at a frequency slightly less than fSN (Fig.
2b), a stable operating point exists, represented by the
solid black circles in both the 1D and the 2D cases. The
open circles represent operating points that are dynam-
ically unstable. As the drive frequency is increased and
reaches fSN, the system dynamic undergoes a SN bifur-
cation (Fig. 2c) where the stable and unstable solutions
merge to form a degenerate saddle node in 1D, and a
SN on an invariant circle (SNIC) in 2D. As the drive fre-
quency is increased beyond fSN (Fig. 2d), the response
moves away from the SNIC bifurcation, and no stable
solution exist. However, the dynamic of the system is
still influenced by the proximity to the SNIC bifurcation.
In the 1D case, it results in a range of operating values
where the system dynamics slow down as represented by
smaller arrows in the stability diagram. In 2D, there
are no steady operating points on the limit cycle, as a
consequence, the resonator simply circles the limit cycle
indefinitely. However, the remnant of the SN bifurcation
(not easily visualized in 2D) affects the local time scales.
This is schematically shown by slow flow (small arrows)
and fast flow (large arrows) as the resonator traverses
the limit cycle. Mathematically this can be described by
two time parameters, τ1 and τ2. τ1 represents the length

of the response burst and τ2 represents the strength of
the remnant, which varies strongest with the coupling
parameter, κ. This bifurcation structure dictates a scal-
ing law for the period of the limit cycle near the SNIC
bifurcation, which is dominated by the slow part of the
cycle and is given by [31]:

T = τ1 + τ2(fF − fSN)−
1/2 (5)

where T is the period of the cycle, τ1 is the duration of
the fast burst, τ2 accounts for the slow dynamics near
the remnant of the SN, and fF − fSN is the detuning of
the frequency from the SNIC bifurcation. As the driving
frequency is further increased, the remnant of the bi-
furcation becomes weaker, reducing the influence of the
SNIC, and the period of the limit cycle approaches τ1.

The observed modulated amplitude behavior of the
resonator near the SNIC bifurcation is characterized by
fixing the drive amplitude and measuring the temporal
response of the resonator for various drive frequencies
moving across fSN (Fig. 2a green line). For frequencies
less than fSN, the response of each mode as a function
of time is constant because the resonator operates at a
stable point (Fig. 2b). As the frequency is increased
greater than fSN, the magnitudes of the responses of the
two modes transition abruptly from constant to a peri-
odic modulation, as expected from the SNIC bifurcation.
The response of a single cycle shows a period of time
spent near the SN remnant (τ1) followed by an excur-
sion (burst) (τ2) until the response again approaches the
SN remnant. As the frequency is further increased, the
resonator continues with a periodic modulated response
with bursting periods becoming shorter as the remnant
of the SN becomes weaker. Fig. 3a and 3b show plots
of single period responses as the frequency is increased
from fSN (blue, black), demonstrating the change in the
temporal response to fSN.

The spectral responses (fast Fourier Transform) of the
time data, for a time period of 40s of the bursting behav-
iors are shown in Fig. 3c as a function of the frequency
detuning, fF −fSN. Only the fundamental frequency and
the first comb frequency are shown for clarity. The center
frequencies of the different drives are shifted to zero to
clearly show the change in comb spacing as the frequency
offset is increased. Finally, Fig. 3d shows a plot of the
period as the frequency is detuned from fSN. Fitting
this to Eq. 5, we obtain a very good match with a value
of 0.32 s for τ1 and 0.47 s1/2 for τ2. This demonstrates
tunability of the length of the time excursions and con-
currently the spacing of the frequency combs by a single
parameter, the frequency offset from the SNIC bifurca-
tion. By controlling the drive frequency, the spacing of
the combs in the frequency spectra is completely deter-
mined. The understanding of the bifurcation structure
provides the necessary mathematical basis to predict the
response of the system. Additionally, since the normal
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form for this internal resonance is generic [29], this be-
havior is not limited to only this mechanical resonator
but applicable to vastly different systems that follow this
normal form with comparable parameter conditions.

In summary, we demonstrate the first experimental re-
alization of a SNIC bifurcation in a mechanical device.
It results in a temporal response with bursting behavior
separated by periods of near steady response and whose
attendant frequency response shows a “frequency comb”
spanning a bandwidth of about two orders of magnitude
larger than the linear dissipation rate. The experimen-
tal results are accurately captured by a dynamical model
for 1:3 internal resonance with parameters determined
from the experimental device. The parameters obtained
for the model and general knowledge about the nature
of this response allow us to accurately predict the influ-
ence of drive parameters on the spacing of the frequency
comb. The generic nature of the model for this internal
resonance indicates that similar dynamic behaviors and
bifurcation structures will occur for systems exhibiting
this internal resonance, regardless of the physical nature
of the system. For example, many biological systems ex-
hibit behaviors that change with environmental stimuli
that can be described by bifurcations [34], specifically,
the SNIC bifurcation has been proposed as a model for
neuron spiking [13], potentially opening up new ways to
emulate neuron interactions [35] through completely me-
chanical and easily controlled systems.
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munications 3, 806 (2012).

[21] C. Chen, D. H. Zanette, D. A. Czaplewski, S. Shaw, and
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FIG. 1. Nonlinear microelectromechanical resonator with
bursting response. (a) SEM of the microelectromechanical
resonator with a scale bar of 100 µm. (b) Amplitude response
curves of the resonator as a function of drive frequency, fF,
for different drive voltages, Vo, (mV): 2 (gray), 5 (red), 10
(blue), 15 (purple), 17 (black). (c) Temporal amplitude re-
sponse of the flexural (blue) and torsional (red) responses
showing the bursting behavior. (d) Frequency spectrum of
the temporal response measured in (c) showing the genera-
tion of a frequency comb.
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FIG. 2. (a) Theoretical (colored lines) and experimental
(black circles) SN bifurcation conditions in the (V oltage, fF)
parameter plane. The solid blue line shows the SN bifurca-
tions resulting from Duffing while the red line shows the SN
saturation near ftor/3. (b), (c), (d) Schematic of the SNIC bi-
furcation structures for the resonator near internal resonance,
indicating the slow 1D dynamics (top row, local to the SN bi-
furcation) and the global setting with the cycle connection,
depicted here in 2D (bottom row, showing a higher dimen-
sional response with the IC). The black solid circles (stable)
and hollow circles (unstable) represent steady-state operating
points. Large (small) arrows indicate fast (slow) dynamics.
As the frequency is increased from below to above fSN, the
steady-state branches merge and disappear, leaving the sys-
tem to perform periodic motion on the invariant cycle.
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FIG. 3. Experimental control of the SNIC period and corre-
sponding frequency combs. (a) Single period of the temporal
response of the resonator as the drive frequency is increased
from fSN by 0.07 Hz. (b) Single period of the temporal re-
sponse of the resonator as the drive frequency is increased
from fSN by 1.02 Hz. (c) Spectral response of the resonator
for frequency offsets from fSN of 0.07 HZ, 0.22 Hz and 1.02
Hz, showing increased spacing of the comb frequencies, cor-
responding to the temporal plots in (a) and (b). (d) Period
of response as a function of frequency offset (gray circles and
the three cases in (c) shown as blue, red and black squares)
and a least-squares fit (green line) to the theoretical scaling
(Eq. 5) of the period, T, near the SNIC bifurcation.


