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Imaging systems’ performance at low light intensity is affected by shot noise, which becomes
increasingly strong as the power of the light source decreases. In this paper we experimentally
demonstrate the use of deep neural networks (DNNs) to recover objects illuminated with weak
light and demonstrate better performance than with the classical Gerchberg-Saxton phase retrieval
algorithm for equivalent signal over noise ratio. The prior contained in the training image set can
be leveraged by the DNN to detect features with a signal over noise ratio close to one. We apply
this principle to a phase retrieval problem and show successful recovery of the object’s most salient
features with as little as one photon per detector pixel on average in the illumination beam. We also
show that the phase reconstruction is significantly improved by training the neural network with an
initial estimate of the object, as opposed to training it with the raw intensity measurement.

Many imaging systems only yield partial or distorted
information about the object being imaged. Typical
causes include loss of spatial frequencies, lack of phase in-
formation, unknown scatterers in the optical train, aber-
rations, and noise in the illumination or detection. In
these situations, the mathematical operator describing
the imaging system becomes ill-posed and usually re-
quires regularization. A regularizer is an operator de-
signed to favor solutions that match our prior knowledge
about the object, if any. The choice of the regularizer it-
self is often arbitrary and based on practical experience.
Recently, Deep Neural Networks (DNNs) have attracted
much attention in the field of computational imaging, for
they provide a way to regularize a problem adaptively.
As of today, DNNs have been proven efficient solvers in
many imaging applications such as deblurring [1], under-
sampled imaging [2], ghost imaging [3], phase retrieval [4—
9], adaptive illumination microscopy [10], adaptive op-
tics [11], and optical tomography [12, 13]. For consumer
cameras operating with broadband, spatially incoherent
light of flux as low as ~0.1 Ix at the camera, a DNN
can recover images with significant detail [14]; also for
phase retrieval with coherent illumination, numerical re-
sults show that DNNs outperform classical methods on
noisy data [7].

In this paper, we demonstrate experimentally for the
first time, to our knowledge, that DNNs can solve a co-
herent phase retrieval problem affected by strong shot
noise at various levels. In situations where the light
source is weak, the detection signal to noise ratio (SNR)
is ultimately limited by the quantized nature of light.
Because of its fundamental nature, shot noise cannot be
avoided and regularization schemes must be devised to
handle it. As the noise becomes more significant, re-
construction algorithms’ performance in general deteri-
orates; this is the regime where we expect the biggest
payoff from the DNN, assuming that it has been suc-
cessfully trained to recover the object features that best
explain the observed signal distribution. Best results are
obtained for objects within restricted classes, i.e. shar-

ing similar constrained features, or equivalently having
a sparse description in some domain of appropriately
chosen basis functions. To illustrate this, we used two
sets of databases to train DNNs: a relatively restricted
class of Integrated Circuit (IC) layouts, and the more
general ImageNet [15] image dataset. We found that
the DNN reconstructions attain better visual quality for
IC layouts at low photon counts (one~two per pixel per
frame) than for ImageNet.

DNNs represent a very versatile method for inferring
the relationship between objects and their corresponding
measurements through the imaging system. A DNN is
typically trained on a set of examples, each example con-
taining the ideal image of the object (the ground truth)
and a corresponding measurement. The DNN can be
viewed as an operator mapping the measurement (or a
known function of the measurement) to the desired im-
age. The internal parameters of the DNN are adjusted to
minimize a loss function that describes how close the im-
age is to the ground truth. After the training, examples
from a test set, which have not been used in the train-
ing phase, are given to the DNN, which then outputs the
reconstructed images.

The phase retrieval problem addressed in this work can
be written, for an optically thin object, as:
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where (x,y) are the lateral coordinates, g is the intensity
measurement in the detector plane, t and f are, respec-
tively, the modulus and phase of the field immediately af-
ter the object, uin. the incident field in the object plane,
and Fj, the Fresnel propagation operator over a distance
L. In what follows, we assume that the object modu-
lates only the phase, therefore t(z,y) = 1, and we define:
g = H(f). The optimization problem implicitly solved
by the DNN can be written as:

f— argmin {H(f), g, @(f)} , 2)



where 1 is the functional to minimize and ©® the regu-
larizer operating on f, i.e. imposing constraints on the
solution. In a classical optimization procedure, the regu-
larizer would be chosen ad hoc. Instead, here we let the
DNN discover a regularization adapted to the specific
class of objects we train with.

In this work, the loss function to be minimized is
chosen as the negative Pearson correlation coefficient
(NPCC) defined in the supplementary material. The use
of the NPCC as a loss function, as opposed for example
to the mean square error, proved to be a better metric for
DNN training in the context of phase retrieval, especially
with sparse objects [5].

For our phase retrieval problem, one possibility is to
train the DNN with (fx, gg) couples, k being the index
within the training set. We refer to this approach as the
“end-to-end” method as it makes use of the endpoints
of the optical system, i.e. the object phase f and raw
intensity measurement g. It should be noted that, in the
end-to-end method, in addition to the regularization, the
DNN carries the burden of learning the law of Fresnel
propagation. Since Fresnel propagation is a well char-
acterized physical law, it seems inefficient to have the
DNN being optimized, even partially, to explain it. Some
knowledge about the physical laws has to be included in
the training process in order for the DNN to focus on
learning a regularizer.

The phase retrieval problem described in Eq. 1 can-
not be inverted directly, simply because the detector is
not sensitive to phase. Therefore, there is no unique way
of disentangling the contribution of the physics and the
contribution of the noise (or any other stochastic process
involved). However, the well-known Gerchberg-Saxton
(GS) [16] and the gradient descent algorithms for phase
retrieval provide a useful insight. Even though the phase
is not known in the detector plane, an approximate phase
can be assumed and used to project the field back to the
object plane using the inverse Fresnel operator. In this
work, we associate the phase of the incident beam in the
detector plane with the square root of the intensity mea-
surement to produce a complex field, which is propagated
back to the object plane. The phase of this complex field
in the object plane is referred to as an “approximant” (or
GS-approximant as it is inspired by the GS algorithm) as
it is generally closer to the solution than the raw intensity
measurement. Note that the adjoint of operator H, used
in the gradient descent method, can also be used to gener-
ate an approximant, however, we will restrict our analysis
to the GS-approximant. The approximant can be used in
lieu of the raw measurement for the DNN training. This
is an example of a “physics-informed” method as part of
the physical process is embedded in the approximant it-
self. A similar procedure involving such a preprocessing
step has been described recently in [17].

In what follows, we describe a series of experi-
ments designed to systematically compare the end-to-
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FIG. 1. Optical apparatus. VND: variable neutral density
filter, P1-P2: polarizers, L1: 10x, 0.25 NA objective, L2:
100 mm lens, L3: 230 mm lens, L4: 100 mm lens, F1: 5pm
pinhole, F2: iris. SLM: transmissive spatial light modulator.
Lens L3 and L4 are confocal. The distance between the SLM
and L3 is 230mm, the distance between L4 and the image
plane is 100mm, and Az = 400mm.

end, physics-informed (using the GS-approximant), and
the classical Gerchberg-Saxton methods for different lev-
els of noise. Corresponding simulations have been per-
formed and are presented in the supplementary material.
The experimental apparatus is depicted in Fig. 1.

The light source is a Helium-Neon laser emitting con-
tinuous wave radiation at 632.8 nm. The laser beam in-
tensity is controlled by a calibrated variable neutral den-
sity filter. The beam is focused onto a 5 um circular pin-
hole using a 10x, 0.25NA Newport objective. After the
pinhole, the beam is collimated with a 100mm lens. The
beam is then passed through a transmissive spatial light
modulator (SLM) (Holoeye LC2012) with 36 pm square
pixels. In order to maximize the SLM phase modulation
capability, the incident light is linearly polarized (P1)
at a certain angle (45° from the horizontal axis). The
modulated light from the SLM is filtered by a second po-
larizer (P2). The complex (phase and intensity) trans-
mittance of the SLM was calibrated interferometrically
for the particular polarizers configuration used in the ex-
periment. The SLM surface is reduced by a factor of 2.3
by a telescope system (lenses L3 and L4 in Fig. 1) in or-
der for the diffracted pattern to fit within the detector.
The detector is an EM-CCD 1004x1002 array (QImag-
ing Rolera EM-C2) of 8 x 8 pm pixels. The EM gain and
exposure time of the camera are controlled by software.
The detector is placed at a distance Az = 400 mm from
the image plane. An additional neutral density filter with
an optical density of 2 is placed in front of the detector
to suppress background light and adjust the photon level
range. The actual optical power is measured between fil-
ter F2 and lens L4 with a Silicon detector. Details about
the calibration are given in the supplementary material.
It should be noted that the SLM has a residual inten-
sity modulation effect, which was measured during the
calibration step (see supplementary material).

For each image category (ImageNet and IC layouts)
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FIG. 2. (a-b) Ground truth phase of one example from each test set of IC layouts and ImageNet. (c-f) Raw measurements in the
detector plane. (g-j) Gerchberg-Saxton algorithm reconstructions from the raw measurements c-f. (k-n) DNN reconstructions
with the end-to-end method. (o-r) Approximants in the image plane. (s-v) DNN reconstructions from the approximants o-r
with the physics-informed method. For better display, the grayscales of all images have been normalized to range from the
minimal to the maximal value. Images a, b and g to v represent a phase in the image plane and have a physical size of 4x4mm,
while images ¢ to f represent an intensity in the detector plane and have a physical size of 8 x8mm.



and for each noise level, a different DNN is trained. The
examples are split into a training set, a validation set and
a test set containing 9,500, 450 and 50 examples of 256
by 256 pixel images, respectively. The DNN input and
output images are 256 by 256 pixels, which is the native
resolution of the images in the dataset. For the end-to-
end method, the detector images (1002 by 1002 pixels)
are resampled to the proper size using bilinear interpo-
lation. For the physics-informed method, each detector
image is zero-padded to a size such that the inverse Fres-
nel propagator would yield an approximant in which the
object covered a 256 by 256 pixel area. The DNN has the
same encoder-decoder architecture as presented in [5] ex-
cept that five instead of six convolutional layers are used
in the encoder and decoder parts.

Examples of reconstruction from the test sets for both
ImageNet and IC layouts are shown in Fig. 2 for two ex-
treme photon level cases. Table I summarizes the noise
level for each experiment shown in Fig. 2 and 3. The noise
levels indicated in the table refer to the incident beam,
i.e. with no modulation on the SLM. When a pattern
is displayed on the SLM, the SNR at the detector plane
varies strongly spatially as a result of intensity redistri-
bution, which is why using the incident beam as reference
was preferred. The integration time was set at 2ms for
all experiments mentioned in Table I and Fig. 2 and 3.
The integration time was kept short to avoid degradation
of the SNR due to air turbulence.

The results shown in Fig. 2 allow us to draw qualita-
tive conclusions. As can be seen in Fig. 2 (g-j) and (o-1),
the DNN is very efficient in suppressing the granularity
typical of shot noise. The end-to-end method reconstruc-
tions appear as low-pass filtered versions of the original
image, especially for ImageNet examples. IC layout ex-
amples are still reconstructed with sharp edges as this
feature is omnipresent in the IC layout. The interpre-
tation is that the DNN does not fully learn the diffrac-

TABLE I. Noise levels and photon count for the experiments
shown in Fig. 3. The illumination conditions are the same for
both the IC layout and the ImageNet datasets. The photon
count is the effective number of photons after dividing by
the quantum efficiency per detector pixel averaged over the
whole detector field for the incident beam (no modulation on
the SLM). The procedure for measuring the photon count is
given in the supplementary material. The SNR is the mean
of the incident beam signal divided by its standard deviation
and averaged over the whole field of view. The limit SNR is
the square root of the number of photons.

lExperiment[EM gain[Photon count :|:5%[SNR[Limit SNRI

1 1 1.0x10% 20 32
2 1 84 2.7 9.2
3 1 43 1.45 6.6
4 4.8 9.8 0.9 3.1
5 54 1.1 0.5 1.0
6 54 0.25 0.24 0.5

tion operator, but rather learns how to suppress fringes
and other diffraction related patterns and also how to
promote characteristic features of the training examples.
The physics-informed reconstructions are visually better
because, in this case, high frequencies are provided to the
DNN by the approximant (especially visible in Fig. 2q).
In the low photon example of the IC layout (Fig. 2t),
the general pattern is recovered, but additional spurious
tracks have been added by the DNN that seems to pro-
mote periodicity, a feature quite prominent in IC layout
examples.

We use the Pearson correlation coefficient (PCC =
—NPCC) as a figure of merit for the quality of the re-
constructions; the results are shown in Fig. 3. Note that
other metrics for image quality can be used. In Fig. 3
of the supplementary material, we show a comparison of
the following metrics: the classical Mean Square Error
(MSE), the Structural Similarity Index (SSIM) [18], and
a wavelet transform based SSIM [19].
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FIG. 3. Pearson correlation coefficient between the ground
truth and the DNN reconstructions. (a) IC layout data set.
(b) ImageNet data set. The markers indicate the mean over
the test set (50 examples) and the error bars +1 standard
deviation from the mean.

In the case of the IC layout, for all photon levels, the



physics-informed method performs systematically better
than the end-to-end method, which in turn performs bet-
ter than the GS algorithm. A similar result holds for the
ImageNet example set, except that there is less differ-
ence between the end-to-end and the physics-informed
reconstruction and also that the standard deviation of
the reconstruction quality is larger even for high photon
levels. The GS reconstructions for high photon level do
not display this trend (their standard deviation remains
equally large). This latter observation confirms that the
strong prior in the IC layout geometry is efficiently ex-
ploited by the DNN. In Fig. 3, we also plotted the PCC
between the ground truth and the approximant. The
approximant is the input image to the physics-informed
DNN and is also the result of the first iteration of the
GS algorithm. As such, the increase in image quality be-
tween the approximant and the GS and physics-informed
reconstructions indicates the improvement brought by
each technique. The improvement brought by the DNN
is systematically better. We did not plot the PCC be-
tween the raw measurement and the ground truth as
these images belong to different spaces (object vs. de-
tector space), and for strong diffraction the comparison
would be meaningless.

The PCC is not sensitive to the magnitude of the im-
ages (i.e. PCC(A,B) = PCC(aA4,BB),a,5 € R), the
phase images are thus reconstructed up to a scaling fac-
tor. However, for a given DNN the scaling factor is
constant and can be retrieved by comparing the valida-
tion set ground truth examples and corresponding recon-
structions. In practice, the scaling factor is obtained by
comapring the histograms of the ground truths and re-
constructions images.

The approximant clearly helps in recovering high fi-
delity images. The question of knowing what is the best
way of obtaining an approximant in the context of phase
retrieval is beyond the scope of this paper. It should be
recognized that the GS-approximant the way it is com-
puted here corresponds to half of the first iteration of
the GS algorithm. The question whether it is worthy to
iterate more in order to generate an approximant is still
open, but preliminary results tend to show that little is
gained by iterating more.
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