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A Bose condensate subject to periodic modulation of the two-body interactions was recently
observed to emit matter-wave jets resembling fireworks [Nature 551, 356(2017)]. In this paper,
combining experiment with numerical simulation, we demonstrate that these “Bose fireworks”
represent a late stage in a complex time evolution of the driven condensate. We identify a “density
wave” stage which precedes jet emission and results from interference of matterwaves. The density
waves self-organize and self-amplify without breaking the long range translational symmetry. This
density wave structure deterministically establishes the template for the subsequent patterns of
the emitted jets. Our simulations, in good agreement with experiment, also address the apparent
asymmetry in the jet pattern and show it is fully consistent with momentum conservation.

Time-periodic driving, which allows coherent
manipulation of many-body systems, is becoming
an exciting tool in the field of ultracold atomic gases.
Driving provides access to new quantum physics, for
example topological states, synthetic gauge fields and
Mott transitions [1–7]. Of particular interest is the rather
unique capability of these atomic systems to investigate
non-equilibrium many-body dynamics [8]. Also unique to
ultracold gases is the ability to use Feshbach resonances
to periodically modulate atomic interactions [9], as
recently implemented by the Chicago group [10, 11] and
the Rice group [12–14] on Bose-Einstein condensates.
In the Chicago experiment, a collective emission of
matter-wave jets resembling fireworks occurs above a
threshold modulation amplitude [10].

In the present paper we use the time-dependent
Gross-Pitaevskii (GP) equation to study the evolution
of the modulated BEC and the emission of jets.
We show that the simulations capture well the
“Bose fireworks” dynamics seen in experiments. In
combination with a new set of experiments, we identify a
previously unobserved early stage of the time evolution.
Immediately after the onset of modulation, we observe
that density waves emerge and grow rapidly within the
condensate. The density waves display a high degree of
disorder, reflecting quantum fluctuations which we model
with a very small [15] random noise term.

As in general parametric resonances [16–20], the
density waves set up an effective, self consistently
produced “grating” which, through feed-back effects,
resonantly amplifies their pattern [21]. (A notable feature
distinguishing the parametric resonance here is that
the amplification can occur with essentially arbitrary
driving frequency.) This process proceeds until pairs
of jets (having wavenumber determined by [10, 22]
the modulation frequency ω.) are ejected in opposite
directions. Within these pair-wise correlations, there
remains a quantitative asymmetry that has attracted
prior attention [23, 24].

30 µm

 0 5 9 14 18 t = 28 ms

Time t

Ex
pe

rim
en

t
Si

m
ul

at
io

n

D
ensity n (µm

-2) 0

30

15

D
ensity n/ n

0

0

0.6

0.3

FIG. 1. The real space density distribution n(r) as a
comparison between experimental data and simulations. In
both, the modulation frequency ω/2π is 2 kHz, the DC and
AC interaction energies respectively are U0n0 ≈ h×40 Hz, and
U1n0 ≈ h×480 Hz, where h is Planck’s constant (see the main
text for detailed definitions). As a function of modulation
time t, the system exhibits three phases: density waves in a
confined condensate (blue box), near-field emission (orange
box) and far-field emission (red box).

We focus on two important results: first, we show
that the density wave pattern underlies the jet-emission
process, and second, we provide a quantitative
understanding of the puzzling asymmetry in the emission
pattern. Figure 1 summarizes the full evolution of
the system and shows good agreement between our
simulations and experiment. Three distinct regimes of
the Bose fireworks can be identified: the early density
wave (DW) regime, the initial emergence of jets (called
the “near-field emission”) and the well established jet
emission regime (called the “far-field emission”). In the
near field stage the excited modes begin to leave the
condensate while still substantially overlapping with each
other. After a sufficiently long time, the matter-wave
jets become well separated in the far field and the
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FIG. 2. Experiment and simulation comparison for early-stage density waves (DW) with |k| = kf . (a) The real-space DW
oscillations inside the condensate. Theory (top) and experiment (bottom) show good qualitative agreement. The experiment
exhibits additional static, long-wavelength density modulations due to trap imperfections. The experimental details are provided
in the main text. (b) The amplitude of the density waves in the primary mode comparing simulations (red solid line) and
experiments (blue dots with error bars). In addition to fast oscillations, both results show consistent observation of an
exponential growth of the envelope until the matter-wave jets are emitted from the condensate.

observed density profiles primarily reflect the populations
in momentum-space.

We begin with the theoretical and experimental
investigation of the early-stage density waves. Figure 2
presents the experimental observation and theoretical
confirmation of the emergence of density waves. The
experiments begin with a Bose condensate of 4 × 104

cesium atoms prepared in a uniform disk-shaped trap
with a radius of 13µm (see Ref. 10 for experimental
details). The trap has a potential barrier of height
h × 200 Hz in the horizontal direction (h is the Planck
constant) and is harmonic vertically with a frequency
of 220 Hz. By modulating the magnetic field near
a Feshbach resonance, we make the scattering length
oscillate as a(t) = adc + aac sin(ωt) with a small offset
adc = 4a0 and large amplitude aac = 40a0 at frequency
ω/2π = 620 Hz, where a0 is the Bohr radius.

After modulating the interaction for time t, we
perform in situ imaging and observe density waves
forming within the condensate prior to jet emission.
Figure 2 (a) shows snapshots of the condensate density
distribution n(r) and theoretical simulations. To be
more quantitative, we extract the density wave amplitude
Akf = n−10

∫
|k|=kf dk |ñ(k)| from the Fourier transform

of the condensate density ñ(k) = (2π)−1
∫
dre−ik·rn(r),

see Fig. 2 (b). Here kf =
√
mω/~ is the wavenumber

of the density wave determined by the parametric
resonance condition; n0 is the average density of the
static condensate prior to interaction oscillations; m is
the boson mass; and ~ is the reduced Planck constant.
Interestingly, this density wave amplitude exhibits fast
oscillation under a slowly growing envelope.

We note that this density wave pattern is reminiscent
of Faraday waves in classical fluids [25, 26] and related
to that predicted for driven atomic gases [27–30] as well
as observed in a one-dimensional condensate [31]. In
contrast to classical Faraday waves our system does not
spontaneously exhibit three-fold or higher symmetries.
These symmetries are expected to arise from nonlinear
kinetic terms in the hydrodynamic equations of motion
[25, 26], which are not present in the GP equation.

Our theoretical approach is based on a dynamical GP
equation:

i~
∂ψ

∂t
=

[
− ~2

2m
∇2 + V (r) + U0|ψ|2 − µ

]
ψ

+ U1 sin(ωt)|ψ|2ψ,
(1)
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FIG. 3. Connection between density waves before jet emission
and the subsequent matter-wave jet pattern. (a) shows
the azimuthal density structure factor S(kf ) from a single
iteration of the GP simulations at resonant wavenumber kf
at t = 10 (blue), 13 (purple), 15 (red) ms prior to jet
emission. At each time we observe the same shape with
growing amplitude, consistent with the expected amplification
process of density waves. The dashed black curve is the
real-space azimuthal population distribution of jets N(φ) at
t = 45 ms. The scaling factor N0 is the total number of
atoms in the system. The alignment of all maxima and
minima between S(kf , φ) and N(φ) shows the equivalence
between density waves and jets. (b) schematically shows
that the early-time density waves with wavenumber kf leads
to the emission of counter-propagating jets with the same
wavenumber kf at long time.

where ψ is the wavefunction, µ = U0n0 is the chemical
potential of the static condensate, V (r) is the external
trap potential, and r = (x, y) is a two-dimensional (2D)
spatial coordinate (with origin at the trap center). In
addition, U0 = 4π~2adc/m and U1 = 4π~2aac/m are
the DC and AC interaction strengths, respectively. At
short times, the condensate is weakly excited and the
wavefunction can be linearized [27, 28]

ψ = ψ0 [1 + ν(r, t)] , (2)

where ψ0 =
√
n0 exp [iU1n0 cos(ωt)/~ω] is the

wavefunction of a uniform BEC, and U0 has been
absorbed through the parametrization in Eq. (1).
Since the characteristic DW length scales are much
smaller than the trap size, we ignore trap effects in our
analytical approach. In the plane wave basis we write
ν(r, t) = [ξ(t) + iζ(t)] cos(k · r + ϕ) with both ξ(t) and
ζ(t) real and ϕ a random phase. Since |ν| � 1, ξ satisfies
the Mathieu equation for parametric resonances:

∂2ξ

∂t2
+ Ω2 [1 + α sin(ωt)] ξ = 0, (3)

and ζ satisfies the same equation with an extra term
−αω cos(ωt)∂ζ∂t on the left hand side. Here we keep only

leading terms in α; Ω2 = ~2k4/4m2 + U0n0k
2/m, and

α = U1n0k
2/mΩ2.

The solution of Eq. (3) is ξ(t) ≈ A+ cos(ωt/2 +
ϑ+) exp(λ+t) + A− sin(ωt/2 + ϑ−) exp(λ−t). Here A±
are numerical coefficients, and the exponents are

λ± = ±
√
α2Ω2

16
−
(

Ω− ω

2

)2
. (4)

The solution exhibits both subharmonic oscillations with
half the driving frequency ω and an exponential envelope
growth (via λ+). For U0 ≈ 0 as in experiments, the
resonance with maximal λ+ occurs at k = kf . At this
point, ϑ± ≈ 0, and ζ(t) ≈ −A+ sin(ωt/2) exp(λ+t) +
A− cos(ωt/2) exp(λ−t).

The interference between the uniform background and
the excitations then gives the density n(r) = n0|1 +
ν(r, t)|2 ≈ n0 [1 + 2ξ(t) cos(k · r + ϕ)], leading to the
density waves of exponentially growing envelope that we
report here. To provide the full dynamical evolution
and to include trap effects, we next appeal to the more
complete numerical simulations of the GP equation.

Our simulations are 2D and incorporate a ring trap
with inner and outer radii Rin and Rout, respectively. We
choose V (r) = V0 for Rin < r < Rout and zero elsewhere.
V0 is taken to be compatible with experiment, Rin is
taken to be the condensate radius, and, as in experiment
[10], Rout ≈ 1.5Rin. We use a CUDA-based GP equation
solver [32, 33], implemented on graphic processing units,
based on a split-step algorithm. At t > 0 we introduce a
periodic oscillation of the two-body interaction term.

It should be noted that the exponents in Eq. (4)
coincide with those derived in Ref. 10 for the matter-wave
jets. This suggests that the two forms of excitations
may be manifestations of the same physics. We probe
this hypothesis in Fig. 3 which contains results from
our full GP simulations. Indeed, Fig. 3 provides
strong simulation evidence that the density waves are
necessary precursors to the jets and that they establish
the template for the subsequent jet emission pattern. In
particular, we find that the structure factor with fixed
extrema (established by the DW pattern at the onset of
shaking) is precisely equivalent to the real-space emitted
jet population N(φ) observed after a long propagation
time.

The structure factor is defined by S(kf , φ) =

N−10

∫
kdk|ñ(k)|2, where the magnitude and phase of the

wavevector are |k| = k ≈ kf and φ = arctan(kx/ky).
Note from Fig. 3 (a) that the structure factor contains
random peaks and valleys as determined by the initial
random seed which emulates the fluctuations of real
experiments. These patterns are established at the onset
of shaking, and the only change with increasing time is
an exponential growth of the peak amplitudes.

The dashed black line plotted in Fig. 3 (a) is the
real-space azimuthal distribution for the jet population
N(φ) =

∫
r=(~t/m)k

rdr n(r), at long times. Importantly,
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FIG. 4. Time evolution and correlations of the emitted
jets. (a) shows the calculated jet emission pattern evolving
from the near- to far-field regimes. The calculation is based
on identical initial noise seeding. (b) shows the real space
azimuthal population of the four images in (a), identified by
the same color. Note that the t = 45 ms far-field curve is
equivalent to that shown dashed in Fig. 3 (a). Here unlike in
Fig. 3, the peaks and valleys are slightly displaced with time.
Panel (c) probes the emission asymmetry in real space ηr =

g(2)(π) − g(2)(0) (brown circles) and the momentum-space
analogue ηk (green squares). The main figure shows that the
(0, π) asymmetry is always absent in momentum space (ηk is
strictly zero within numerical precision) so that momentum
is conserved. In real space, using Panel (b) we find that this
(0, π) asymmetry decreases with increasing time. The inset

indicates the correlation function g(2)(φ) at the same 4 times
as in (a), along with an early time momentum correlation
function at t = 20 ms (black curve). Again, inversion 0-π
symmetry is broken at short times, but recovers after long
time-of-flight, and is fully preserved in momentum space. The
solid line (brown) in (c) is an analytical fit to ηr [34].

the angular distribution shows the equivalence between
S(kf , φ) and N(φ). This underlies our claim that density
waves and jets are deterministically correlated. These
results are summarized in Fig. 3 (b). This presents a
schematic plot linking the momentum space spectrum
of the DW and the population of jets with the same

wavevector ±k after long time of flight.
Having established the equivalence between the

far-field jets and the initial density waves, one might
expect that the same azimuthal distribution would
appear in the near-field regime, when jets are first
emitted from the condensate. However, our simulations
show that this is not the case. In Fig. 4 (a) and
(b), a clear modification of the distribution shape
with varying time is seen and is accompanied by an
“inversion symmetry breaking” (in the near field). This is
associated with the observation (reported experimentally
[10]) of an asymmetric two-particle correlation function
g(2)(φ) of the jet emission pattern, i.e., g(2)(π) 6= g(2)(0).

Here we propose and provide strong numerical support
for a scenario which explains this observation and,
in contrast to the literature [23, 24], has momentum
conservation. This is well substantiated by the detailed
numerics summarized in Fig. 4 (c), along with analytical
arguments in the supplementary material [34]. To
quantify this inversion asymmetry, we introduce a
parameter

ηr =

〈
[N(θ)−N(θ + π)]

2
〉

2 〈N(θ)〉2
= g(2)(0)− g(2)(π)

for real space (and its analogue, ηk in momentum space
[34]), where 〈. . .〉 corresponds to averaging over angles
θ and ensembles. Figure 4 (c) plots the asymmetry
functions, ηr,k, in real- and momentum-space, together

with the corresponding correlation function g(2)(φ)
shown in the inset. The spatial asymmetry ηr decreases
from a finite value to zero when going from the near to
far field. This indicates that the inversion symmetry
is recovered at large times. The momentum-space
asymmetry ηk, interestingly, remains zero independent
of time, showing clearly that momentum conservation is
obeyed at all times.

We attribute this asymmetry to the fact that, in
the near field, excitations of different wavevectors
substantially overlap with each other. The resulting
pattern is derived from interference between these
overlapping modes, which have uncorrelated random
phases. Thus, when measuring the population at
angles θ and θ + π, the symmetry between the relevant
counter-propagating pair ±k (tan θ = ky/kx) is masked
by interference from other uncorrelated modes. By
contrast, in the far field, different modes are well
separated so that each jet now represents a single mode.
Here momentum conservation is more apparent and
inversion symmetry in real space is recovered [34].

The asymmetry in the emission pattern has
alternatively been attributed to di-jet acollinearity
due to hydrodynamic collisions, seen, for
example, in quark-gluon plasmas [23], or to the
Hanbury-Brown-Twiss effect in the angular momentum
eigenstate basis within a time-dependent Bogoliubov
theory [24]. In this context, our numerical calculations
show that momentum conservation persists throughout
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the entire evolution, as argued earlier [10]. In this paper
we have provided a more intuitive and quantitative
picture showing how the asymmetry arises from the
interference between overlapping matterwave modes
[34].

Conclusions.– The present paper has addressed the
jet emission process induced by a periodic drive of
the two-body interactions. Through a combination
of simulations of the Gross-Pitaevskii equation and
experiments, we demonstrated that the jet structure is
imprinted in the early stages of an excited condensate,
through density waves. Observing the actual density
waves in experiments, as reported in the present paper,
was key to confirming this picture. Also critical to
this analysis is the demonstrated capability of the GP
simulations to successfully address experiments involving
this stimulated emission over widely varying time,
space and momentum coordinates. Our simulations

have provided predictive capabilities as well as the
ability to establish the important underlying principles
(such as momentum conservation) of a broad scope of
experimental matter-wave jet observations.

Acknowledgments.
We are grateful to Tom Witten for helpful discussions

and Igor Aronson and Andreas Glatz for the numerical
GP code. L. F. acknowledges support from an
MRSEC-funded Graduate Research Fellowship. L.
W. C. was supported by a Grainger Graduate
Fellowship. This work was primarily supported by
the University of Chicago Materials Research Science
and Engineering Center, which is funded by the
National Science Foundation under award number
DMR-1420709. We also acknowledge support from
NSF Grant No. PHY-1511696 and the Army Research
Office-Multidisciplinary Research Initiative under grant
W911NF-14-1-0003.

[1] A. Eckardt, Rev. Mod. Phys. 89, 011004 (2017).
[2] G. Jotzu et al., Nature 515, 237 (2014).
[3] M. Aidelsburger et al., Nature Physics 11, 162 (2015).
[4] M. Aidelsburger et al., Phys. Rev. Lett. 107, 255301

(2011).
[5] A. Zenesini, H. Lignier, D. Ciampini, O. Morsch, and

E. Arimondo, Phys. Rev. Lett. 102, 100403 (2009).

[6] J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg,
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