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Abstract

A variation principle for mass transport in solids is derived that recasts transport coefficients as minima

of local thermodynamic average quantities. The result is independent of diffusion mechanism, and applies

to amorphous and crystalline systems. This unifies different computational approaches for diffusion, and

provides a framework for the creation of new approximation methods with error estimation. It gives a dif-

ferent physical interpretation of the Green function. Finally, the variational principle quantifies the accuracy

of competing approaches for a nontrivial diffusion problem.
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Mass transport in solids is the fundamental kinetic process controlling both the evolution of

materials towards equilibrium and a variety of material properties[1]. Diffusion of atoms dic-

tates everything from the stability of amorphous materials at finite temperature, the design of

nanoscaled semiconductor devices, the processing of structural metals including steels and super-

alloys, the performance of batteries and fuel cells, to the degradation of materials due to corrosion

or even irradiation. Since Einstein[2], diffusion has been understood as mesoscale motion aris-

ing from many individual atomic displacements, with significant effort over the last century to

experimentally measure and model theoretically[3, 4]. In the last forty years, computation has

played an increasingly important role, with different competing approximation methods develop-

ing, combined with increasingly accurate methods to compute transition state energies for atomic

processes in transport[5–7]. However, while we have increasing accuracy in predicting atomic

scale mechanisms, we lack a clear methodology to compare accuracy of theoretical models that

derive mesoscale transport coefficients.

The modern macroscale description of mass transport comes from Onsager’s work on nonequi-

librium thermodynamics[8], where atomic fluxes J are linearly proportion to small driving forces.

A general driving force is the gradient of chemical potential of species α. Then, the Onsager

transport coefficients are second-rank tensors L(αβ) that relate steady state fluxes in species α

Jα = −
∑
β

L(αβ)∇µβ (1)

are steady-state fluxes in response to perturbatively small driving forces in chemical species ∇µβ.

These transport coefficients can also be derived from a thermodynamic extremal principle[9, 10]

for maximum entropy production, making the Onsager matrix symmetric and positive semidefi-

nite.

A brief, albeit incomplete list of methods to compute transport coefficients from atomic mecha-

nisms include stochastic methods like kinetic Monte Carlo[11–15], master-equation methods like

the self-consistent mean-field method[16, 17] and kinetic mean-field approximations[18–20], path

probability methods for irreversible thermodynamics[21–23], Green function methods[24–27],

and Ritz variational methods[28–30]. The different approaches all have different computational

and theoretical complexity, rely on different approximations which may or may not be controlled.

However, the relationships between different approximations is not always clear, and it is difficult

to determine which of two different calculations is more accurate, short of comparison to experi-

mental results. In what follows, we derive a general expression for the mass transport coefficients
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in a solid system, and then cast this non-local form into an equivalent minimization problem over

thermodynamic averages of local quantities: a variational principle for mass transport, with a sim-

ple physical interpretation. We show that different computational approaches can be derived and

compared with this principle, while also providing a framework for the development of new types

of approximations for diffusion. We conclude with a quantitative comparison for a random alloy

on a square lattice.

Consider a system with chemical species[31] α = A, B, . . . , with discrete microstates {χ}, and

transitions between states. For each state χ and species α, Nα
χ of that species are at positions

{xαχi : i = 1 . . .Nα
χ }. Note that the xαχi are themselves functions of the state χ. If each state has an

energy Eχ, then in the grand canonical ensemble, the equilibrium probability of occupying a given

microstate for chemical potentials µα at temperature T is

P0
χ := P0

χ(T, µ
A, . . .) = exp

 1
kBT

Φ0 +
∑
α

µαNα
χ − Eχ

 (2)

where Φ0 is a normalization constant—the grand potential—such that
∑
χ P0

χ = 1. If the chemical

potentials were spatially inhomogeneous, then the term corresponding to the sum over chemistry

would be
∑
α

∑
i µ

α(xαχi). We assume that our system can achieve equilibrium through a Marko-

vian process, with transition rates W(χ → χ′) ≥ 0; then, by detailed balance, P0
χW(χ → χ′) =

P0
χ′W(χ′ → χ). If all nonzero rates conserve chemical species, then the rates W(χ → χ′) are

independent of the chemical potentials, and can only depend on the initial and final states and

temperature. The master equation for the evolution of a time dependent probability Pχ(t) is

dPχ(t)
dt

=
∑
χ′

Pχ′(t)Wχ′χ (3)

and we introduce the shorthand matrix form

Wχ′χ =


W(χ′ → χ) : χ , χ′

−
∑
χ′ W(χ→ χ′) : χ = χ′

(4)

We identify steady state solutions of Eqn. 3—which may not be equilibrium solutions—as distri-

butions where the right-hand side is zero for every χ; we are interested in steady-state solutions

that maintain infinitesimal gradients in chemical potentials, for which we will compute fluxes.

What follows is a generalization of results derived previously for a lattice gas model[27]; de-

tails are available in the supplemental material[32]. Consider a steady-state probability distribution

Pss
χ := Pss

χ (T, µA, . . . ,∇µA, . . .) in the presence of infinitesimally small chemical potential gradient
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vectors ∇µα. This steady-state probability distribution can have time-independent fluxes Jα corre-

sponding to mass transport. For any (non-zero rate) transition χ→ χ′, we define the mass transport

vector for each species α as δxαχχ′ :=
∑

i xαχ′i − xαχi. This is the net change in positions for all atoms

of species α, as Nα
χ = Nα

χ′ when W(χ→ χ′) , 0. Then, the flux is

Jα = V−1
0

∑
χχ′

Pss
χ Wχχ′δxαχχ′ (5)

for total system volume V0. We make the ansatz that the steady-state probability distribution for

infinitesimal gradients

Pss
χ = P0

χ

1 +
δΦ0

kBT
+

1
kBT

∑
α

∇µα ·

ηαχ +

Nα
χ∑

i=1

xαχi


 (6)

up to first order in ∇µα, where δΦ0 is a change in the normalization relative to the equilib-

rium distribution, and introducing the relaxation vectors ηαχ that are to-be-determined for each

state χ. These vectors are a generalization of the rate-dependent relaxation in solute-vacancy

exchange[33]. If we substitute Eqn. 6 into Eqn. 3, set dPss
χ /dt = 0, apply detailed balance, divide

out by P0
χ, and require that it hold for arbitrary ∇µα, we find∑

χ′

W(χ→ χ′)δxαχχ′ = −
∑
χ′

W(χ→ χ′)
(
ηαχ′ − η

α
χ

)
. (7)

We define the left-hand side as the velocity vector bαχ :=
∑
χ′ Wχχ′δxαχχ′ , so that Eqn. 7 becomes

bαχ = −
∑
χ′

Wχχ′η
α
χ′ . (8)

for the steady-state ansatz solution to be time invariant. Then, the transport coefficients L(αβ) can

be found by substituting the steady-state solution into Eqn. 5, while explicitly symmetrizing the

summation (rewriting as 1
2

∑
χχ′ +

∑
χ′χ), which gives

L(αβ) =
1

kBTV0

〈
1
2

∑
χ′

Wχχ′δxαχχ′ ⊗ δx
β
χχ′︸                        ︷︷                        ︸

uncorrelated

−bαχ ⊗ η
β
χ︸  ︷︷  ︸

correlated

〉
χ

(9)

where the two terms are the “uncorrelated” and “correlated” contributions to diffusivity[3, 34],

and the average is the shorthand for
∑
χ P0

χ.

While Eqn. 9 has the form of a simple thermal average, the primary complication is the solution

of Eqn. 8, which requires the pseudoinversion of the singular rate matrix Wχχ′ over the entire state
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space; this is the Green function Gχχ′ := W+
χχ′ . While the rate matrix is local—as there are only a

finite number of final states χ′ to transition from any state χ—the Green function is known to be

non-local, and difficult to compute in general. However, the governing equation for the relaxation

vectors ηαχ can be recast instead in a variational form by taking advantage of an invariance in

Eqn. 9.

First, the separation of Eqn. 9 into correlated and uncorrelated terms is arbitrary[34, 35]. We

introduce changes to the positions of atoms in a state while leaving the rate matrix unchanged:

Let yαχ be the sum of all displacements of atoms of species α in state χ. We can, without loss

of generality[36], consider only cases where
∑
χ yαχ = 0. Then, the yαχ change the displacement,

velocity, and relaxation vectors

δ̃x
α

χχ′ = δxαχχ′ + yαχ′ − yαχ, b̃αχ = bαχ +
∑
χ′

Wχχ′yαχ′ ,

η̃αχ = −
∑
χ′

Gχχ′b̃αχ′ = ηαχ −
∑
χ′χ′′

Gχχ′Wχ′χ′′yαχ′′ = ηαχ − yαχ

as G is the pseudoinverse of W, and yαχ is orthogonal to the right null space of W. Then, the

Onsager coefficients are

kBTV0L̃
αβ

=

〈
1
2

∑
χ′

Wχχ′

(
δxαχχ′ + yαχ′ − yαχ

)
⊗

(
δxβχχ′ + yβχ′ − yβχ

)
−

(
bαχ +

∑
χ′

Wχχ′yαχ′
)
⊗

(
ηβχ − yβχ

)〉
χ

=

〈
1
2

∑
χ′

Wχχ′δxαχχ′ ⊗ δx
β
χχ′

〉
χ

+
1
2

∑
χχ′

P0
χWχχ′

(
yαχ′ − yαχ

)
⊗

(
yβχ′ − yβχ

)
+

1
2

∑
χχ′

P0
χWχχ′δxαχχ′ ⊗

(
yβχ′ − yβχ

)
+

1
2

∑
χχ′

P0
χWχχ′

(
yαχ′ − yαχ

)
⊗ δxβχχ′ −

〈
bαχ ⊗ η

β
χ

〉
χ

+
∑
χ

P0
χbαχ ⊗ yβχ −

∑
χχ′

P0
χWχχ′yαχ′ ⊗ η

β
χ +

∑
χχ′

P0
χWχχ′yαχ′ ⊗ yβχ

= kBTV0L(αβ) −
∑
χχ′

P0
χWχχ′yαχ ⊗ yβχ′ −

〈
bαχ ⊗ yβχ

〉
χ
−

〈
yαχ ⊗ bβχ

〉
χ

+
〈
bαχ ⊗ yβχ

〉
χ

+
〈
yαχ′ ⊗ bβχ

〉
χ

+
∑
χχ′

P0
χWχχ′yαχ′ ⊗ yβχ = kBTV0L(αβ)

This requires detailed balance P0
χWχχ′ = P0

χ′Wχ′χ and the sum rule
∑
χ′ Wχχ′ = 0. Hence, the

transport coefficients are invariant under arbitrary displacements, while the “uncorrelated” and

“correlated” terms themselves change.

We can exploit this invariance by noting that, for α = β, the uncorrelated contribution is positive

semidefinite and the correlated contribution is negative semidefinite, as Wχχ′ and Gχχ′ are negative

semidefinite matrices. Thus, the maximum value of the correlated contribution is zero, which

corresponds with the minimal value of the uncorrelated contribution, and so the equation for the

transport coefficients can be rewritten as

L(αα) =
1

2kBTV0
inf
yαχ

〈∑
χ′

Wχχ′ δ̃x
α

χχ′ ⊗ δ̃x
α

χχ′

〉
χ

, (10)
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which is a variational principle for mass transport involving only thermodynamic averages of

local rate matrix. Here, the infimum of the tensor corresponds to the tensor with the smallest

trace[37]. The values of yαχ that minimize Eqn. 10 are found by making the generalized force from

the gradient of `α := kBTV0 Tr L(αα)
uncorr = 1

2

〈∑
χ′ Wχχ′(δ̃x

α

χχ′)
2
〉
χ
,

fαχ := −
∂`α

∂yαχ
= −

1
2
∂

∂yαχ

∑
χ′χ′′

P0
χ′Wχ′χ′′

(
δxαχ′χ′′ + yαχ′′ − yαχ′

)2

= −2P0
χ

∑
χ′

Wχχ′

(
δxαχχ′ + yαχ′ − yαχ

)
= −2P0

χb̃
α
χ

(11)

equal to zero; this is satisfied when yαχ = ηαχ. Moreover, the arguments yαχ that minimize `α can

then be used to compute the off-diagonal contributions,

L(αβ) =
1

2kBTV0

〈∑
χ′

Wχχ′ δ̃x
α

χχ′ ⊗ δ̃x
β

χχ′

〉
χ

∣∣∣∣∣∣yαχ=arg inf `α

yβχ=arg inf `β

(12)

Hence, while the α , β terms are not variational, they are determined by the solution of the

diagonal variational problem. Eqn. 10 is similar to the Varadhan-Spohn variational form[38],

which Arita et al. note is a powerful, albeit abstract result that is difficult to apply in practice,

involving “cylinder” functions[39]; it is simpler than the alternate Ritz variational form, as there

is no normalization of an eigenvector required[28–30].

This variational principle for mass transport has multiple consequences. First, it unifies multi-

ple approaches for the computation of mass transport coefficients, including kinetic Monte Carlo,

Green function methods, and self-consistent mean-field theory. Moreover, it provides a direct way

to compare the accuracy of different methods: outside of the convergence of stochastic sampling

errors, once a mass transport method is recast in a variational form, the minimal value of the di-

agonal transport coefficients is necessarily closer to the true value. It also gives a simple physical

explanation for the correlation contributions in mass transport: the ηαχ values are displacements

that map a correlated random walk into an equivalent uncorrelated random walk with identical

transport coefficients. Finally, it provides a framework for the construction of new algorithms for

the computation of mass transport that requires the minimization of a thermal average; as it is

based on minimization, different approximations for yαχ can be simultaneously introduced, while

the process of minimization finds the optimal solution.

In the case of a linear expansion for the relaxation vectors, the variational principle for mass

transport provides a simple general expression for diffusivity. Let {φαχ,n} be a set of basis vectors

so that we expand yαχ =
∑

n φ
α
χ,nθ

α
n with coefficients θαn . The supplemental material Sec. S4 shows
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the most general solution; here, we include the solution for the case where the basis functions are

chemistry- and direction-independent: φαχ,ni = êiφχ,n for a Cartesian orthonormal basis ê1, ê2, ê3.

Then, the coefficients that minimize Eqn. 10 can be found by solving
∑

m Wnmθ
α
mi = b

α

n · êi where,

Wnm :=
〈∑

χ′

Wχχ′φχ,nφ
α
χ′,m

〉
χ

, b
α

n :=
〈
φχ,nbαχ

〉
χ
. (13)

We can take the pseudoinverse of G := (W)+, and then the transport coefficients are (c.f. Eqn. S26)

L(αβ)
LBAM =

1
2kBTV0

〈∑
χ′

Wχχ′δxαχχ′ ⊗ δx
β
χχ′

〉
χ

+
1

kBTV0

∑
nm

〈
φχ,nbαχ

〉
χ
⊗ Gnm

〈
φχ,mbβχ

〉
χ

(14)

where the diagonal transport coefficients L(αα)
LBAM are guaranteed to be an upper bound on the true

coefficients, achieving equality when the basis {φχ,n} spans ηαχ.

We can now express existing computational approaches as attempts to solve the variational

problem. For kinetic Monte Carlo[11–15], each trajectory represents a single sample in the aver-

age, while the increasing length of a trajectory attempts to converge the relaxation vectors corre-

sponding to that single starting state. In Sec. S3, the equivalence of kinetic Monte Carlo to the

variation method is shown; moreover, the use of a finite length trajectory is variational: assuming

perfect sampling of initial states, and with perfect sampling of trajectories of a finite length, the

transport coefficients will be greater than the true transport coefficients. If one uses accelerated

KMC methods[40–44], superbasins—a finite collection of states with fast internal transitions but

slow escapes—are effectively collapsed onto a single position, which is an approximation to the

relaxation vector ηαχ. For vacancy-mediated diffusion, the dilute Green function[26, 27] and ma-

trix methodology[24, 25] work in a restricted state space {χ} where only one solute and vacancy

are present, and then effectively construct a full basis in that state space. Finally, self-consistent

mean-field[16, 17] and kinetic mean-field[18–20] work with a cluster expansion of chemistry-

and direction-independent basis functions {φχ,n} that are products of site occupancies for different

chemistries. It should be noted that these latter two methods derive their solution for the parameters

θn using a ladder of n-body correlation functions on which they invoke “closure approximations”

for higher order correlation functions; in a variational framework, such closure approximations be-

come unnecessary. Finally, when methods are framed in variational terms, we can quantitatively

compare accuracy by identifying which method gives the smallest diagonal elements L(αα), and

also estimate remaining error through the average residual bias, 〈(̃bαχ)2/(−Wχχ)〉χ in Eqn. S29, or

its ratio with 〈(bαχ)2/(−Wχχ)〉χ.
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In addition to providing a common frame for existing computational methods for mass trans-

port, we now have a new framework to develop and test new approximations, including those

that are more appropriate for amorphous systems that lack crystalline order but still possess well-

defined microstates. A simple example is the basis function choice φαχ = bαχ; in Sec. S5 of the sup-

plemental material, a closed-form approximation for transport coefficients is provided in Eqn. S32.

This approximation involves inverting a matrix that has the same dimensionality as the number of

independent chemical species; however, it only captures local correlations. We can also take the

dilute Green function methodology for vacancy-mediated transport into finite solute concentra-

tions by using the basis functions φχ,βx that are equal to the occupancy (0 or 1) by chemistry β of a

site at a vector x relative to a vacancy in state χ. This approximation exactly reproduces the dilute

solute limit by being equivalent to an infinite range two-body-only version of the Green function.

For a quantitative comparison of these new approximations, we consider a random binary alloy

on a square lattice with a single vacancy. In this model, there is no binding energy between

any species, and the jump rate for the vacancy only depends on the chemistry of the species

it is exchanging: either νA (“solvent” exchange) or νB (“solute” exchange). We take νA = 1,

and consider three cases: νB = 1 (tracer), νB = 4 (“fast” diffuser), and νB = 0 (frozen solute).

This system has nontrivial behavior, including a percolation limit[45, 46] for νB = 0 where the

diffusivity of solvent is 0 for cB < 1. To compute the transport coefficients, we use: (1) kinetic

Monte Carlo on a 64×64 periodic grid, generating 256 samples of trajectories run for 4096 vacancy

jumps each; the transport coefficients are computed 32 separate times to get a mean and stochastic

error estimate. (2) A two-body Green function approximation (c.f. Sec. S6), which has the analytic

solution (c.f. Eqn. S40),

L(AA)
GF = 1cva2

0

cAνA −
cAcBν

2
A

νA + νB +
2 f−1
1− f (cAνA + cBνB)


L(BB)

GF = 1cva2
0

cBνB −
cAcBν

2
B

νA + νB +
2 f−1
1− f (cAνA + cBνB)


(15)

where f = (π−1)−1 ≈ 0.467 is the dilute tracer correlation coefficient for a square lattice. (3) A bias

basis approximation, which has the same transport coefficients as Eqn. 15 with the approximation

f = 1 − 2/(z + 1) = 0.6. (4) A self-consistent mean-field approach taking into account clusters of

all orders within two jumps: ±x̂, ±ŷ, ±x̂± ŷ, ±2x̂, and ±2ŷ. Finally, for νB = 0 we use a full Green

function solution for vacancy diffusivity with 256 configurations of a 256 × 256 periodic cell, and

compute a residual bias correction (RBC) for the two-body Green function results.
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Fig. 1 shows the different accuracy for this binary system, where the lowest diffusivity is the

most accurate. The Green function approach captures the dilute A and B limits for the tracer and

fast diffuser examples, and is the most accurate of the three approaches. The largest difference

is seen for the percolation case νB = 0, where both the Green function and self-consistent mean-

field methods are good approximations for cB . 0.2, but begin to break down as we approach the

percolation limit. In this case, solutes are creating islands where a vacancy is trapped and unable to

diffuse over long distances; inside such an island, the relaxation vectors should map all “trapped”

states onto the same position, producing no contribution to the diffusivity. We also see the direct

simulations produce lower, more accurate, diffusivity. The size of these islands gets smaller as

cB increases, and only the self-consistent mean-field method—and only at large concentrations of

solute—is able to reproduce the behavior seen by kinetic Monte Carlo. This suggests the need to

go beyond the two-body basis for the Green function approach, or combining local multisite basis

functions with long-range basis functions, or perhaps new approximation methods all together.

One example such approach is the RBC, where following a linear basis approximation method,

the residual bias vectors serve as basis vectors for a correction to the diffusivity; in the case of

νB = 0, we derive an analytic expression (c.f. Sec. S7, Eqn. S47) that has similar error to the

SCMF result.

With a variational formulation of transport coefficients, we can develop new approximate meth-

ods for modeling diffusion in solids, including amorphous materials. If linear approximations are

used, then basis functions provide a projection of the state space into a subspace while the varia-

tional principle provides a lower bound on transport coefficients. The selection of basis functions

can be guided by physical insight—such as diffusing quasiparticles—and systematic improvement

is always possible. It is also possible to construct nonlinear approximations to the relaxation

vectors yαχ which might require fewer parameters to describe; still, a variational principle permits

relative comparisons of different methods, and a lower bound on the result. While the fundamental

insight for the variational formulation came from the invariance in Eqn. 9, it can be derived as an

thermodynamic extremum principle where the positions of atoms are “free” variables, connecting

to Onsager’s original work.
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FIG. 1. Diffusivity of “solute” atom B and “solvent” A in a random alloy on a square lattice, scaled by

vacancy concentration. The vacancy exchange rate with atom A is 1, while we consider different relative
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